Вот один из подходов. Первый шаг - сгруппировать данные по имени и записать, сколько полов использовали имя и их общую сумму. После этого мы можем отфильтровать структуру по именам, используя более одного пола. Наконец, мы сортируем этот многогранный список по количеству и берем 0-й элемент. Это наше самое популярное мульти-родовое название года.
import requests
import lxml.html as lh
url = "https://www.ssa.gov/cgi-bin/popularnames.cgi"
year = input("Year: ")
response = requests.post(url, data=dict(year=year, top="1000", number="n"))
doc = lh.fromstring(response.content)
tr_elements = doc.xpath("//table[2]//td[2]//tr")
column_names = [col.text_content() for col in tr_elements[0]]
names = {}
most_common_shared_names_by_year = {}
for row in tr_elements[1:-1]:
row = [cell.text_content() for cell in row]
for i, gender in ((1, "male"), (3, "female")):
if row[i] not in names:
names[row[i]] = {"count": 0, "genders": set()}
names[row[i]]["count"] += int(row[i+1].replace(",", ""))
names[row[i]]["genders"].add(gender)
shared_names = [
(name, data) for name, data in names.items() if len(data["genders"]) > 1
]
most_common_shared_names = sorted(shared_names, key=lambda x: -x[1]["count"])
print("%s => %s" % most_common_shared_names[0])
Если вам интересно, вот результаты с 2000 года:
2000 => Tyler, 22187
2001 => Tyler, 19842
2002 => Tyler, 18788
2003 => Ryan, 20171
2004 => Madison, 20829
2005 => Ryan, 18661
2006 => Ryan, 17116
2007 => Jayden, 17287
2008 => Jayden, 19040
2009 => Jayden, 19053
2010 => Jayden, 18641
2011 => Jayden, 18064
2012 => Jayden, 16952
2013 => Jayden, 15462
2014 => Logan, 14478
2015 => Logan, 13753
2016 => Logan, 12099
2017 => Logan, 15117