Я пытался запустить этот код с https://keras.io/examples/cifar10_cnn/. Изначально он выдавал ошибки, связанные с тензорным потоком, керасами и cuda. Я решил это обновлением и все. Теперь, когда я запускаю этот код в Jupyter Notebooks, мое ядро почти мгновенно умирает. Имейте в виду, я не намеренно использую cuda, это просто дало какую-то ошибку, и я был удивлен, потому что я даже не запрограммировал его на то или иное.
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os
batch_size = 32
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
Стек ошибок:
ImportError Traceback (most recent call last)
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>
57
---> 58 from tensorflow.python.pywrap_tensorflow_internal import *
59 from tensorflow.python.pywrap_tensorflow_internal import __version__
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in <module>
27 return _mod
---> 28 _pywrap_tensorflow_internal = swig_import_helper()
29 del swig_import_helper
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in swig_import_helper()
23 try:
---> 24 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
25 finally:
~\Anaconda3\envs\cv_course\lib\imp.py in load_module(name, file, filename, details)
242 else:
--> 243 return load_dynamic(name, filename, file)
244 elif type_ == PKG_DIRECTORY:
~\Anaconda3\envs\cv_course\lib\imp.py in load_dynamic(name, path, file)
342 name=name, loader=loader, origin=path)
--> 343 return _load(spec)
344
ImportError: DLL load failed: The specified module could not be found.
During handling of the above exception, another exception occurred:
ImportError Traceback (most recent call last)
<ipython-input-1-429941c8ff8d> in <module>
1 from __future__ import print_function
----> 2 import keras
3 from keras.datasets import cifar10
4 from keras.preprocessing.image import ImageDataGenerator
5 from keras.models import Sequential
~\Anaconda3\envs\cv_course\lib\site-packages\keras\__init__.py in <module>
1 from __future__ import absolute_import
2
----> 3 from . import utils
4 from . import activations
5 from . import applications
~\Anaconda3\envs\cv_course\lib\site-packages\keras\utils\__init__.py in <module>
4 from . import data_utils
5 from . import io_utils
----> 6 from . import conv_utils
7
8 # Globally-importable utils.
~\Anaconda3\envs\cv_course\lib\site-packages\keras\utils\conv_utils.py in <module>
7 from six.moves import range
8 import numpy as np
----> 9 from .. import backend as K
10
11
~\Anaconda3\envs\cv_course\lib\site-packages\keras\backend\__init__.py in <module>
87 elif _BACKEND == 'tensorflow':
88 sys.stderr.write('Using TensorFlow backend.\n')
---> 89 from .tensorflow_backend import *
90 else:
91 # Try and load external backend.
~\Anaconda3\envs\cv_course\lib\site-packages\keras\backend\tensorflow_backend.py in <module>
3 from __future__ import print_function
4
----> 5 import tensorflow as tf
6 from tensorflow.python.framework import ops as tf_ops
7 from tensorflow.python.training import moving_averages
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\__init__.py in <module>
32
33 # pylint: disable=g-bad-import-order
---> 34 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
35 from tensorflow.python.tools import module_util as _module_util
36
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\__init__.py in <module>
47 import numpy as np
48
---> 49 from tensorflow.python import pywrap_tensorflow
50
51 # Protocol buffers
~\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>
72 for some common reasons and solutions. Include the entire stack trace
73 above this error message when asking for help.""" % traceback.format_exc()
---> 74 raise ImportError(msg)
75
76 # pylint: enable=wildcard-import,g-import-not-at-top,unused-import,line-too-long
ImportError: Traceback (most recent call last):
File "C:\Users\Hamza\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "C:\Users\Hamza\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "C:\Users\Hamza\Anaconda3\envs\cv_course\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "C:\Users\Hamza\Anaconda3\envs\cv_course\lib\imp.py", line 243, in load_module
return load_dynamic(name, filename, file)
File "C:\Users\Hamza\Anaconda3\envs\cv_course\lib\imp.py", line 343, in load_dynamic
return _load(spec)
ImportError: DLL load failed: The specified module could not be found.
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/errors
for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
Несмотря на то, что я установил все соответствующие пакеты, и они работали как часы раньше.
Когда я запустилэто на другой машине он просто начал скачивать Cifar10, но это было в универе. Мне нужно закончить работу на домашнем компьютере и посмотреть, как это исправить. Как я могу успешно выполнить это?