Я новичок в OpenCV Java, и у меня есть приложение для Android, которое будет сопоставлять два изображения, используя ORB FeatureDetector и DescriptorExtractor. Я использую DescriptorMatcher BRUTEFORCE_HAMMING. Все время работает сопоставитель, но в других случаях он показывает дубликаты ключевых точек. Когда изображение на сцене слишком яркое или слишком темное, на нем отображаются дубликаты ключевых точек, что не соответствует желаемому.
Изображение, которое точно соответствует:
Плохое изображение соответствует:
try {
bmpObjToRecognize = bmpObjToRecognize.copy(Bitmap.Config.ARGB_8888, true);
bmpScene = bmpScene.copy(Bitmap.Config.ARGB_8888, true);
img1 = new Mat();
img2 = new Mat();
Utils.bitmapToMat(bmpObjToRecognize, img1);
Utils.bitmapToMat(bmpScene, img2);
Imgproc.cvtColor(img1, img1, Imgproc.COLOR_RGBA2GRAY);
Imgproc.cvtColor(img2, img2, Imgproc.COLOR_RGBA2GRAY);
Imgproc.equalizeHist(img1, img1);
Imgproc.equalizeHist(img2, img2);
detector = FeatureDetector.create(FeatureDetector.ORB);
descExtractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
keypoints1 = new MatOfKeyPoint();
keypoints2 = new MatOfKeyPoint();
descriptors = new Mat();
dupDescriptors = new Mat();
detector.detect(img1, keypoints1);
Log.d("LOG!", "number of query Keypoints= " + keypoints1.size());
detector.detect(img2, keypoints2);
Log.d("LOG!", "number of dup Keypoints= " + keypoints2.size());
// Descript keypoints1
descExtractor.compute(img1, keypoints1, descriptors);
descExtractor.compute(img2, keypoints2, dupDescriptors);
// matching descriptors
List<MatOfDMatch> knnMatches = new ArrayList<>();
matcher.knnMatch(descriptors, dupDescriptors, knnMatches, DescriptorMatcher.BRUTEFORCE);
goodMatches = new ArrayList<>();
knnMatchesValue = knnMatches.size();
Log.i("xxx", "xxx match count knnMatches = " + knnMatches.size());
for (int i = 0; i < knnMatches.size(); i++) {
if (knnMatches.get(i).rows() > 1) {
DMatch[] matches = knnMatches.get(i).toArray();
if (matches[0].distance < 0.89f * matches[1].distance) {
goodMatches.add(matches[0]);
}
}
}
// get keypoint coordinates of good matches to find homography and remove outliers using ransac
List<Point> pts1 = new ArrayList<>();
List<Point> pts2 = new ArrayList<>();
for (int i = 0; i < goodMatches.size(); i++) {
Point destinationPoint = keypoints2.toList().get(goodMatches.get(i).trainIdx).pt;
pts1.add(keypoints1.toList().get(goodMatches.get(i).queryIdx).pt);
pts2.add(destinationPoint);
}
// convertion of data types - there is maybe a more beautiful way
Mat outputMask = new Mat();
MatOfPoint2f pts1Mat = new MatOfPoint2f();
pts1Mat.fromList(pts1);
MatOfPoint2f pts2Mat = new MatOfPoint2f();
pts2Mat.fromList(pts2);
// Find homography - here just used to perform match filtering with RANSAC, but could be used to e.g. stitch images
// the smaller the allowed reprojection error (here 15), the more matches are filtered
Mat Homog = Calib3d.findHomography(pts1Mat, pts2Mat, Calib3d.RANSAC, 15, outputMask, 2000, 0.995);
// outputMask contains zeros and ones indicating which matches are filtered
better_matches = new LinkedList<>();
for (int i = 0; i < goodMatches.size(); i++) {
if (outputMask.get(i, 0)[0] != 0.0) {
better_matches.add(goodMatches.get(i));
}
}
matches_final_mat = new MatOfDMatch();
matches_final_mat.fromList(better_matches);
imgOutputMat = new Mat();
MatOfByte drawnMatches = new MatOfByte();
Features2d.drawMatches(img1, keypoints1, img2, keypoints2, matches_final_mat,
imgOutputMat, GREEN, RED, drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
bmp = Bitmap.createBitmap(imgOutputMat.cols(), imgOutputMat.rows(), Bitmap.Config.ARGB_8888);
Imgproc.cvtColor(imgOutputMat, imgOutputMat, Imgproc.COLOR_BGR2RGB);
Utils.matToBitmap(imgOutputMat, bmp);
List<DMatch> betterMatchesList = matches_final_mat.toList();
final int matchesFound = betterMatchesList.size();
} catch (Exception e) {
e.printStackTrace();
}
Какая часть кода мне не хватает?