Я пытаюсь запустить функцию прогнозирования Keras, и для этого я использую этот пример тензорного потока в качестве базы для обучения модели с использованием "числовых столбцов" из кадра данных, пример о двоичной классификациипредсказать, есть ли у пациента болезнь сердца.
Я могу запустить пример успешно, и теперь я хотел бы проверить функцию прогнозирования.
Используемые данные тренировки выглядят так (последний столбец «цель» указывает, есть ли у пациента сердцеболезнь: 1 = истина, 0 = ложь):
my_columns = ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak","slope", "ca","thal", "target"]
my_data = [[63,1,4,130,254,0,2,147,0,1.4,2,1,"reversible",1]]
- Как правильно описать структуру данных, как правильно подготовить набор данных для использования функции прогнозирования?
- Этодостаточно, чтобы решить проблему бинарной классификации, используя пример tenorsflow плюс вызов функции предикторов, чтобы получить результат?
Заранее спасибо,
Gher
PSПрикрепление полного кода примера Tensorflow
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import feature_column
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
URL = 'https://storage.googleapis.com/applied-dl/heart.csv'
dataframe = pd.read_csv(URL)
dataframe.head()
train, test = train_test_split(dataframe, test_size=0.2)
train, val = train_test_split(train, test_size=0.2)
print(len(train), 'train examples')
print(len(val), 'validation examples')
print(len(test), 'test examples')
# A utility method to create a tf.data dataset from a Pandas Dataframe
def df_to_dataset(dataframe, shuffle=True, batch_size=32):
dataframe = dataframe.copy()
labels = dataframe.pop('target')
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
if shuffle:
ds = ds.shuffle(buffer_size=len(dataframe))
ds = ds.batch(batch_size)
return ds
batch_size = 5 # A small batch sized is used for demonstration purposes
train_ds = df_to_dataset(train, batch_size=batch_size)
val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)
for feature_batch, label_batch in train_ds.take(1):
print('Every feature:', list(feature_batch.keys()))
print('A batch of ages:', feature_batch['age'])
print('A batch of targets:', label_batch )
feature_columns = []
# numeric cols
for header in ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'slope', 'ca']:
feature_columns.append(feature_column.numeric_column(header))
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
batch_size = 32
train_ds = df_to_dataset(train, batch_size=batch_size)
val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)
model = tf.keras.Sequential([
feature_layer,
layers.Dense(128, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(train_ds,
validation_data=val_ds,
epochs=5)
loss, accuracy = model.evaluate(test_ds)
print("Accuracy", accuracy)