Я впервые пишу CNN на основе Pytorch. Я наконец-то получил код для запуска до момента создания выходных данных для первого пакета данных, но во втором пакете выдает nan
s. Я значительно упростил модель для целей отладки, но она все еще не работает правильно. Показанная здесь модель представляет собой всего несколько полностью связанных слоев с линейным выходом.
Я предполагаю, что проблема заключается в обратном распространении, но мне неясно, где и почему.
Вот очень упрощенная версия модели, которая по-прежнему выдает ошибку:
Загрузчик данных:
batch_size = 36
device = 'cuda'
# note "rollaxis" to move channel from last to first dimension
# X_train is n input images x 70 width x 70 height x 3 channels
# Y_train is n doubles
torch_train = utils.TensorDataset(torch.from_numpy(np.rollaxis(X_train, 3, 1)).float(), torch.from_numpy(Y_train).float())
train_loader = utils.DataLoader(torch_train, batch_size=batch_size, shuffle=True)
Определите и создайте модель:
def MyCNN(**kwargs):
return MyCNN_model_simple(**kwargs)
# switched from Sequential() style to assist debugging
class MyCNN_model_simple(nn.Module):
def __init__(self, **kwargs):
super(MyCNN_model_simple, self).__init__()
self.fc1 = FullyConnected( 3 * 70 * 70, 100)
self.fc2 = FullyConnected( 100, 100)
self.last = nn.Linear(100, 1)
# self.net = nn.Sequential(
# self.fc1,
# self.fc2,
# self.last,
# nn.Flatten()
# )
def forward(self, x):
print(f"x shape A: {x.shape}")
x = torch.flatten(x, 1)
print(f"x shape B: {x.shape}")
x = self.fc1(x)
print(f"x shape C: {x.shape}")
x = self.fc2(x)
print(f"x shape D: {x.shape}")
x = self.last(x)
print(f"x shape E: {x.shape}")
x = torch.flatten(x)
print(f"x shape F: {x.shape}")
return x
# return self.net(x)
class FullyConnected(nn.Module):
def __init__(self, in_channels, out_channels, dropout=None):
super(FullyConnected, self).__init__()
layers = []
layers.append(nn.Linear(in_channels, out_channels, bias=True))
layers.append(nn.ReLU())
if dropout != None:
layers.append(nn.Dropout(p=dropout))
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
model = MyCNN()
# convert to 16-bit half-precision to save memory
model.half()
model.to(torch.device('cuda'))
Выполнитьмодель:
loss_fn = nn.MSELoss()
dev = torch.device('cuda')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-4)
losses = []
max_batches = 2
def process_batch():
inputs = images.half().to(dev)
values = scores.half().to(dev)
# clear accumulated gradients
optimizer.zero_grad()
# make predictions
outputs = model(inputs)
# calculate and save the loss
model_out = torch.flatten(outputs)
print(f"Outputs: {model_out}")
loss = loss_fn(model_out.half(), torch.flatten(values))
losses.append( loss.item() )
# backpropogate the loss
loss.backward()
# adjust parameters to computed gradients
optimizer.step()
model.train()
i = 0
for images, scores in train_loader:
process_batch()
i += 1
if i > max_batches: break
Стандартный вывод:
x shape A: torch.Size([36, 3, 70, 70])
x shape B: torch.Size([36, 9800])
x shape C: torch.Size([36, 100])
x shape D: torch.Size([36, 100])
x shape E: torch.Size([36, 1])
x shape F: torch.Size([36])
Outputs: tensor([0.0406, 0.0367, 0.0446, 0.0529, 0.0406, 0.0391, 0.0397, 0.0391, 0.0415,
0.0443, 0.0410, 0.0406, 0.0349, 0.0396, 0.0368, 0.0401, 0.0343, 0.0419,
0.0428, 0.0385, 0.0345, 0.0431, 0.0287, 0.0328, 0.0309, 0.0416, 0.0473,
0.0352, 0.0422, 0.0375, 0.0428, 0.0345, 0.0368, 0.0319, 0.0365, 0.0382],
device='cuda:0', dtype=torch.float16, grad_fn=<AsStridedBackward>)
x shape A: torch.Size([36, 3, 70, 70])
x shape B: torch.Size([36, 9800])
x shape C: torch.Size([36, 100])
x shape D: torch.Size([36, 100])
x shape E: torch.Size([36, 1])
x shape F: torch.Size([36])
Outputs: tensor([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
device='cuda:0', dtype=torch.float16, grad_fn=<AsStridedBackward>)
x shape A: torch.Size([36, 3, 70, 70])
x shape B: torch.Size([36, 9800])
x shape C: torch.Size([36, 100])
x shape D: torch.Size([36, 100])
x shape E: torch.Size([36, 1])
x shape F: torch.Size([36])
Outputs: tensor([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
device='cuda:0', dtype=torch.float16, grad_fn=<AsStridedBackward>)
Вы можете увидеть nan
с, исходящих из модели, начиная со второй партии. Что-то явно не так, что я делаю? Если у кого-то есть советы по передовой практике отладки запуска модуля pytorch, которые я могу использовать для отслеживания проблемы, это было бы очень полезно.
Спасибо.