У меня есть автоматический энкодер CNN 1d с плотным центральным слоем. Я хотел бы обучить этот автоэнкодер и сохранить его модель. Я также хотел бы сохранить часть декодера с этой целью: подать некоторые центральные функции (рассчитанные независимо) в обученный и загруженный декодер, чтобы увидеть, каковы изображения этих независимо рассчитанных функций через декодер.
## ENCODER
encoder_input = Input(batch_shape=(None,501,1))
x = Conv1D(256,3, activation='tanh', padding='valid')(encoder_input)
x = MaxPooling1D(2)(x)
x = Conv1D(32,3, activation='tanh', padding='valid')(x)
x = MaxPooling1D(2)(x)
_x = Flatten()(x)
encoded = Dense(32,activation = 'tanh')(_x)
## DECODER (autoencoder)
y = Conv1D(32, 3, activation='tanh', padding='valid')(x)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
autoencoder = Model(encoder_input, decoded)
autoencoder.save('autoencoder.hdf5')
## DECODER (independent)
decoder_input = Input(batch_shape=K.int_shape(x)) # import keras.backend as K
y = Conv1D(32, 3, activation='tanh', padding='valid')(decoder_input)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
decoder = Model(decoder_input, decoded)
decoder.save('decoder.hdf5')
РЕДАКТИРОВАТЬ:
Просто чтобы убедиться, что это ясно, мне сначала нужно присоединиться encoded
и первый y
, в том смысле, что y
должен принимать encoded
в качестве ввода,Как только это будет сделано, мне нужен способ загрузить обученный декодер и заменить encoded
некоторыми новыми центральными функциями, которыми я буду кормить свой декодер.
РЕДАКТИРОВАТЬ следующий ответ:
Iреализовал предложение, см. код ниже
## ENCODER
encoder_input = Input(batch_shape=(None,501,1))
x = Conv1D(256,3, activation='tanh', padding='valid')(encoder_input)
x = MaxPooling1D(2)(x)
x = Conv1D(32,3, activation='tanh', padding='valid')(x)
x = MaxPooling1D(2)(x)
_x = Flatten()(x)
encoded = Dense(32,activation = 'tanh')(_x)
## DECODER (autoencoder)
encoded = Reshape((32,1))(encoded)
y = Conv1D(32, 3, activation='tanh', padding='valid')(encoded)
y = UpSampling1D(2)(y)
y = Conv1D(256, 3, activation='tanh', padding='valid')(y)
y = UpSampling1D(2)(y)
y = Flatten()(y)
y = Dense(501)(y)
decoded = Reshape((501,1))(y)
autoencoder = Model(encoder_input, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
epochs = 10
batch_size = 100
validation_split = 0.2
# train the model
history = autoencoder.fit(x = training, y = training,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_split)
autoencoder.save_weights('autoencoder_weights.h5')
## DECODER (independent)
decoder_input = Input(batch_shape=K.int_shape(encoded)) # import keras.backend as K
y = Conv1D(32, 3, activation='tanh', padding='valid', name='decod_conv1d_1')(decoder_input)
y = UpSampling1D(2, name='decod_upsampling1d_1')(y)
y = Conv1D(256, 3, activation='tanh', padding='valid', name='decod_conv1d_2')(y)
y = UpSampling1D(2, name='decod_upsampling1d_2')(y)
y = Flatten(name='decod_flatten')(y)
y = Dense(501, name='decod_dense1')(y)
decoded = Reshape((501,1), name='decod_reshape')(y)
decoder = Model(decoder_input, decoded)
decoder.save_weights('decoder_weights.h5')
encoder = Model(inputs=encoder_input, outputs=encoded, name='encoder')
features = encoder.predict(training) # features
np.savetxt('features.txt', np.squeeze(features))
predictions = autoencoder.predict(training)
predictions = np.squeeze(predictions)
np.savetxt('predictions.txt', predictions)
Затем я открываю другой файл, и я
import h5py
import keras.backend as K
def load_weights(model, filepath):
with h5py.File(filepath, mode='r') as f:
file_layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
model_layer_names = [layer.name for layer in model.layers]
weight_values_to_load = []
for name in file_layer_names:
if name not in model_layer_names:
print(name, "is ignored; skipping")
continue
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
weight_values = []
if len(weight_names) != 0:
weight_values = [g[weight_name] for weight_name in weight_names]
try:
layer = model.get_layer(name=name)
except:
layer = None
if layer is not None:
symbolic_weights = (layer.trainable_weights +
layer.non_trainable_weights)
if len(symbolic_weights) != len(weight_values):
print('Model & file weights shapes mismatch')
else:
weight_values_to_load += zip(symbolic_weights, weight_values)
K.batch_set_value(weight_values_to_load)
## DECODER (independent)
decoder_input = Input(batch_shape=(None,32,1))
y = Conv1D(32, 3, activation='tanh',padding='valid',name='decod_conv1d_1')(decoder_input)
y = UpSampling1D(2, name='decod_upsampling1d_1')(y)
y = Conv1D(256, 3, activation='tanh', padding='valid', name='decod_conv1d_2')(y)
y = UpSampling1D(2, name='decod_upsampling1d_2')(y)
y = Flatten(name='decod_flatten')(y)
y = Dense(501, name='decod_dense1')(y)
decoded = Reshape((501,1), name='decod_reshape')(y)
decoder = Model(decoder_input, decoded)
#decoder.save_weights('decoder_weights.h5')
load_weights(decoder, 'autoencoder_weights.h5')
# Read autoencoder
decoder.summary()
# read encoded features
features = np.loadtxt('features.txt'.format(batch_size, epochs))
features = np.reshape(features, [1500,32,1])
# evaluate loaded model on features
prediction = decoder.predict(features)
autoencoderpredictions = np.loadtxt('predictions.txt'.format(batch_size, epochs))
fig, ax = plt.subplots(5, figsize=(10,20))
for i in range(5):
ax[i].plot(prediction[100*i], color='blue', label='Decoder')
ax[i].plot(autoencoderpredictions[100*i], color='red', label='AE')
ax[i].set_xlabel('Time components', fontsize='x-large')
ax[i].set_ylabel('Amplitude', fontsize='x-large')
ax[i].set_title('Seismogram n. {:}'.format(1500+100*i+1), fontsize='x-large')
ax[i].legend(fontsize='x-large')
plt.subplots_adjust(hspace=1)
plt.close()
prediction
и autoencoderpredictions
не согласен. Кажется, что prediction
- это просто небольшой шум, тогда как autoencoder predictions
имеет разумные значения.