Я строю автоэнкодер, используя tensorflow
, и мои потери в процессе обучения выглядят так:
Это на самом деле довольно красиво, но мне нужно свести к минимуму колебания, насколько это возможно, это мои гиперпараметры:
batch_size = 64
learning_rate = 0.0002
num_epochs = 50
n_training_samples = 480
threshold = 10000
Я пытался увеличить размер batch_s, уменьшить / увеличить скорость обучения, но, похоже, это не имеет значения, заранее спасибо.
Это Базовая модель:
class BaseModel(Model):
def __init__(self, input_size):
super(BaseModel, self).__init__()
self.weight_initializer = tf.random_normal_initializer(
mean=0.0, stddev=0.25)
self.bias_initializer = tf.zeros_initializer()
self.input_size = input_size
self.layers_shape = [1000, 750, 30, 750, 1000]
def init_variables(self):
self.W1 = tf.compat.v1.get_variable(
'W1', shape=[self.input_size, self.layers_shape[0]],
initializer=self.weight_initializer, dtype=tf.float32)
self.W2 = tf.compat.v1.get_variable(
'W2', shape=[self.layers_shape[0], self.layers_shape[1]],
initializer=self.weight_initializer, dtype=tf.float32)
self.W3 = tf.compat.v1.get_variable(
'W3', shape=[self.layers_shape[1], self.layers_shape[2]],
initializer=self.weight_initializer, dtype=tf.float32)
self.W4 = tf.compat.v1.get_variable(
'W4', shape=[self.layers_shape[2], self.layers_shape[3]],
initializer=self.weight_initializer, dtype=tf.float32)
self.W5 = tf.compat.v1.get_variable(
'W5', shape=[self.layers_shape[3], self.layers_shape[4]],
initializer=self.weight_initializer, dtype=tf.float32)
self.W6 = tf.compat.v1.get_variable(
'W6', shape=[self.layers_shape[4], self.input_size],
initializer=self.weight_initializer, dtype=tf.float32)
self.b1 = tf.compat.v1.get_variable(
'b1', shape=[self.layers_shape[0]],
initializer=self.bias_initializer, dtype=tf.float32)
self.b2 = tf.compat.v1.get_variable(
'b2', shape=[self.layers_shape[1]],
initializer=self.bias_initializer, dtype=tf.float32)
self.b3 = tf.compat.v1.get_variable(
'b3', shape=[self.layers_shape[2]],
initializer=self.bias_initializer, dtype=tf.float32)
self.b4 = tf.compat.v1.get_variable(
'b4', shape=[self.layers_shape[3]],
initializer=self.bias_initializer, dtype=tf.float32)
self.b5 = tf.compat.v1.get_variable(
'b5', shape=[self.layers_shape[4]],
initializer=self.bias_initializer, dtype=tf.float32)
def forward_propagation(self, x):
with tf.name_scope('feed_forward'):
# First Hidden Layer
z1 = tf.linalg.matmul(x, self.W1) + self.b1
a1 = tf.nn.relu(z1)
# Second Hidden Layer
z2 = tf.linalg.matmul(a1, self.W2) + self.b2
a2 = tf.nn.relu(z2)
# Third Hidden Layer
z3 = tf.linalg.matmul(a2, self.W3) + self.b3
a3 = tf.nn.relu(z3)
# Fourth Hidden Layer
z4 = tf.linalg.matmul(a3, self.W4) + self.b4
a4 = tf.nn.relu(z4)
# Fifth Hidden Layer
z5 = tf.linalg.matmul(a4, self.W5) + self.b5
a5 = tf.nn.relu(z5)
prediction = tf.linalg.matmul(a5, self.W6)
return prediction
Это другая модель, которая определяет другие техники:
class AnomalyDetector(BaseModel):
def __init__(self, input_size, num_variables):
super(AnomalyDetector, self).__init__(input_size)
self.init_variables()
self.num_variables = num_variables
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002)
def compute_loss(self, x_train):
mse = tf.keras.losses.MeanSquaredError()
loss = mse(x_train, self.forward_propagation(x_train))
return loss
def train(self, x_train):
with tf.GradientTape() as tape:
gradients = tape.gradient(self.compute_loss(x_train), self.trainable_variables)
gradient_variables = zip(gradients, self.trainable_variables)
self.optimizer.apply_gradients(gradient_variables)
Вот как я тренирую ее:
for epoch in range(num_epochs):
temp_loss = 0
training_dataset.shuffle(len(list(training_dataset)))
for step, x_train in enumerate(training_dataset):
features = tf.reshape(x_train, [1, input_size])
model.train(features)
loss_values = model.compute_loss(features)
temp_loss += loss_values
if step > 0 and step % eval_after == 0:
test_loss = 0
for step_test, x_test in enumerate(test_dataset):
features = tf.reshape(x_test, [1, input_size])
test_loss = model.compute_loss(features)
print('epoch_nr: %d, batch: %d/%d, mse_loss: %.3f' %
(epoch, step, n_batches, (temp_loss/step)))
loss.append(temp_loss/step)
test_losses.append(test_loss)
model.save(save_path)
plt.plot(loss, label='Loss')
plt.plot(test_losses, label='Test Loss')
plt.legend(loc="upper right")
plt.show()