Я пытаюсь найти элементы матрицы, обратной для плохо обусловленной матрицы
Рассмотрим комплексную неэрмитову матрицу M
, я знаю, что эта матрица имеет одно нулевое собственное значение и поэтому является единственной,Однако мне нужно найти сумму матричных элементов: v@f(M)@u
, где u и v - оба вектора, а f (x) = 1 / x (фактически обратная матрица). Я знаю, что нулевое собственное значение не влияет на эту сумму, поэтому с сингулярностью нет явной проблемы. Тем не менее, мой код очень численно нестабилен, и я полагаю, что это является следствием ошибки при поиске собственных значений системы.
Начнем с построения предварительных матриц:
import numpy as np
import scipy as sc
g0 = np.array([0,0,1])
g1 = np.array([0,1,0])
e0 = np.array([1,0,0])
sm = np.outer(g0, e0)
sp = np.outer(e0, g0)
def spre(op):
return np.kron(np.eye(op.shape[0]),op)
def spost(op):
return np.kron(op.T,np.eye(op.shape[0]))
def sprepost(op1,op2):
return np.kron(op1.T,op2)
sm_reg = spre(sm)
sp_reg = spre(sp)
spsm_reg=spre(sp@sm)
hil_dim = int(g0.shape[0])
cav_proj= np.eye(hil_dim).reshape(hil_dim**2,)
rho0 =(np.outer(e0,e0)).reshape(hil_dim**2,)
def ham(g):
return g * (np.outer(g1,e0) + np.outer(e0, g1))
def lind_op(A):
L = 2 * sprepost(A,A.conj().T) - spre(A.conj().T @ A)
L += - spost(A.conj().T @ A)
return L
def JC_lio(g, kappa, gamma):
unit = -1j * (spre(ham(g)) - spost(ham(g)))
lind = gamma * lind_op(np.outer(g0 , e0)) + kappa * lind_op(np.outer(g0 , g1))
return unit + lind
Теперь определим функцию, которая сначала находит левое и правое собственные значения, а затем находит сумму элементов матрицы:
def power_int(g, kappa, gamma):
# Construct the non-Hermitian matrix of interest
lio = JC_lio(g,kappa,gamma)
#Find its left and right eigenvectors:
ev, left, right = scipy.linalg.eig(lio, left=True,right=True)
# Find the appropriate normalisation factors
norm = np.array([(left.conj().T[ii]).dot(right.conj().T[ii]) for ii in range(len(ev))])
#Find the similarity transformation for the problem
P = right
Pinv = (left/norm).conj().T
#find the projectors for the Eigenbasis
Proj = [np.outer(P.conj().T[ii],Pinv[ii]) for ii in range(len(ev))]
#Find the relevant matrix elements between the Eigenbasis and the projectors --- this is where the zero eigenvector gets removed
PowList = [(spsm_reg@ Proj[ii] @ rho0).dot(cav_proj) for ii in range(len(ev))]
#apply the function
Pow = 0
for ii in range(len(ev)):
if PowList[ii]==0:
Pow = Pow
else:
Pow += PowList[ii]/ev[ii]
return -np.pi * np.real(Pow)
#example run:
grange = np.linspace(0.001,10,40)
dat = np.array([power_int(g, 1, 1) for g in grange])
Запуск этого кода приводит к чрезвычайно осциллирующим результатам, где я ожидаю плавную кривую. Я подозреваю, что эта ошибка связана с плохой точностью определения собственных векторов, но я не могу найти какую-либо документацию по этому вопросу. Любые идеи будут приветствоваться.