У меня есть данные о частоте пульса за несколько дней для каждой секунды дня (со случайными пропущенными пропусками данных), например:
structure(list(TimePoint = structure(c(1523237795, 1523237796,
1523237797, 1523237798, 1523237799, 1523237800, 1523237801, 1523237802,
1523237803, 1523237804), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
HR = c(80L, 83L, 87L, 91L, 95L, 99L, 102L, 104L, 104L, 103L
)), row.names = c(NA, 10L), class = "data.frame")
------------------------------
TimePoint HR
1 2018-04-09 01:36:35 80
2 2018-04-09 01:36:36 83
3 2018-04-09 01:36:37 87
4 2018-04-09 01:36:38 91
5 2018-04-09 01:36:39 95
6 2018-04-09 01:36:40 99
7 2018-04-09 01:36:41 102
8 2018-04-09 01:36:42 104
9 2018-04-09 01:36:43 104
10 2018-04-09 01:36:44 103
.
.
.
Я хотел бы применить шкалу (центр = T, шкала= T) функция данных для нормализации среди участников.
- Однако я не хочу нормализовать данные по всем дням, а только через каждые 24 часа
- Так что, если у участника есть данные за 3 дня, HR будетмасштабироваться до z-распределения 3 раза;каждый на соответствующий день
У меня проблемы с успешным выполнением.
# read csv
DF = read.csv(x)
# make sure date stamp is read YYYY Month Day & convert timestamp into class POSIXct
x2 = as.POSIXct(DF[,1], format = '%d.%m.%Y %H:%M:%S', tz = "UTC") %>% data.frame()
# rename column
colnames(x2)[1] = "TimePoint"
# add the participant HR data to this dataframe
x2$HR = DF[,2]
# break time stamps into 60 minute windows
by60 = cut(x2$TimePoint, breaks = "60 min")
# get the average HR per 60 min window
DF_Sum = aggregate(HR ~ by60, FUN=mean, data=x2)
# add weekday /hours for future plot visualization
DF_Sum$WeekDay = wday(DF_Sum$by60, label = T)
DF_Sum$Hour = hour(DF_Sum$by60)
Я могу разделить данные по сериям времени и усреднить ЧСС по часам, но не могу правильно добавить функцию масштабирования.
Помощь оценена.