Я новичок в машинном обучении и Python. Я хочу использовать DecisionTreeClassifier от sklearn. Так как мои функции являются частично числовыми и частично категориальными, мне нужно преобразовать их, потому что DecisionTreeClassifier принимает только числовые функции в качестве входных данных. Для этого я использую ColumnTransformer и конвейеры. Идея заключается в следующем:
- Категориальные и числовые признаки преобразуются в отдельные конвейеры
- Оба вместе образуют вход для классификатора
ОднакоТочность использования моих тестовых данных всегда равна 0%, в то время как моя точность с данными тренировок составляет ~ 85%. Кроме того, вызов cross_val_score () возвращает
ValueError: Found unknown categories ['Holand-Netherlands'] in column 7 during transform
Это странно, потому что я использовал эти самые данные для обучения full_pipeline. Использование разных классификаторов приводит к одинаковому поведению, что приводит меня к мысли, что есть проблема с преобразованиями. Помощь очень ценится!
Ниже мой код:
names = ["age",
"workclass",
"final-weight",
"education",
"education-num",
"martial-status",
"occupation",
"relationship",
"race",
"sex",
"capital-gain",
"capial-loss",
"hours-per-week",
"native-country",
"agrossincome"]
categorical_features = ["workclass", "education", "martial-status", "occupation", "relationship", "race", "sex", "native-country"]
numerical_features = ["age","final-weight", "education-num", "capital-gain", "capial-loss", "hours-per-week"]
features = np.concatenate([categorical_features, numerical_features])
# create pandas dataframe for adult dataset
adult_train = pd.read_csv(filepath_or_buffer= "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data" ,
delimiter= ',',
index_col = False,
skipinitialspace = True,
header = None,
names = names )
adult_test = pd.read_csv( filepath_or_buffer= "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test" ,
delimiter= ',',
index_col = False,
skipinitialspace = True,
header = None,
names = names )
adult_test.drop(0, inplace =True)
adult_test.reset_index(inplace = True)
adult_train.replace(to_replace= "?", value = np.NaN, inplace = True)
adult_test.replace(to_replace= "?", value = np.NaN, inplace= True)
# split data into features and targets
x_train = adult_train[features]
y_train = adult_train.agrossincome
x_test = adult_test[features]
y_test = adult_test.agrossincome
# create pipeline for preprocessing + classifier
categorical_pipeline = Pipeline( steps = [ ( 'imputer', SimpleImputer(strategy='constant', fill_value='missing') ),
( 'encoding', OrdinalEncoder() )
])
numerical_pipeline = Pipeline( steps = [ ( 'imputer', SimpleImputer(strategy='median') ),
( 'std_scaler', StandardScaler( with_mean = False ) )
])
preprocessing = ColumnTransformer( transformers = [ ( 'categorical_pipeline', categorical_pipeline, categorical_features ),
( 'numerical_pipeline', numerical_pipeline, numerical_features ) ] )
full_pipeline = Pipeline(steps= [ ('preprocessing', preprocessing),
('model', DecisionTreeClassifier(random_state= 0, max_depth = 5) ) ])
full_pipeline.fit(x_train, y_train)
print(full_pipeline.score(x_test, y_test))
#print(cross_val_score(full_pipeline, x_train, y_train, cv=3).mean())