Отображение результата прогноза от модели keras до бота телеграммы с использованием python - PullRequest
0 голосов
/ 22 октября 2019

Я создал модель для прогнозирования поражений кожи. После тренировки я сохраняю веса в файле model.h5. У меня есть сценарий прогнозирования и app.py, в котором есть код интеграции телеграммы. Я могу запустить своего бота с помощью команды, загрузить тестовое изображение, но я не вижу результатов, которые отображаются. я могу запустить бота, но результат не возвращается на экран

from telegram import (ReplyKeyboardMarkup, ReplyKeyboardRemove)
from telegram.ext import (Updater, CommandHandler, MessageHandler, Filters, RegexHandler,
                          ConversationHandler)

import logging
from telegram import InlineKeyboardButton, InlineKeyboardMarkup
from telegram.ext import Updater, CommandHandler, CallbackQueryHandler
import sys
import time
import random
import datetime
import json
import requests
import firebase_admin
from firebase_admin import credentials
from firebase_admin import db
from firebase_admin import storage
import cv2
import sys
import pytesseract
import os
from datetime import date
from collections import deque
from bs4 import BeautifulSoup
from urlparse import urljoin
import sys
import urllib2
from predict import predict_class
import matplotlib.pyplot as plt
import copy
import numpy as np
from keras.models import load_model
import tensorflow as tf
import keras.losses
from keras.metrics import categorical_accuracy, top_k_categorical_accuracy
from keras.preprocessing import image


logging.basicConfig(filename='beaconing_bot.log', filemode='w',format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    level=logging.INFO)

logger = logging.getLogger(__name__)

GET_OPTION, PHOTO, LOCATION, PROCESS, END_SESSION = range(5)

flag = 0
queue = deque([])
visited_list = []

image_size = 224

global graph, sess

dis_classes = {
           0:'Actinic Keratoses',
           1:'Basal Cell Carcinoma',
           2:'Benign Keratosis',
           3:'Dermatofibroma',
           4:'Melanoma', 
           5:'Melanocytic Nevi',
           6:'Vascular Lesions'
          }

graph = tf.Graph()
sess = tf.Session(graph = graph)


model = load_model('model.h5', compile = False) 

def start(bot, update):
    global user_name

    user_name = update.message.from_user

    keyboard = [[InlineKeyboardButton("UPLOAD", callback_data='upload'),
                 InlineKeyboardButton("Depth First Search", callback_data='dfs')]]

    reply_markup = InlineKeyboardMarkup(keyboard)
    update.message.reply_text('Hi %s! I am DoctorOnCall Bot. Send /cancel to stop session.\n\nPlease, choose below:' % (user_name['first_name']), reply_markup=reply_markup)
    print(update)
    return GET_OPTION

def get_option(bot, update):

    query = update.callback_query
    print(query)

    if query.data == 'upload':
        bot.edit_message_text(text="Please upload the picture of infected area",
                              chat_id=query.message.chat_id,
                              message_id=query.message.message_id)
        return PHOTO

    elif query.data == 'dfs':

        bot.edit_message_text(text="Breath First Search selected. Please, supply me with the website you want to crawl",
                              chat_id=query.message.chat_id,
                              message_id=query.message.message_id)
        algorithm = 'dfs'
        return GET_URL

def photo(bot, update):
    global create_at
    global picture_name

    datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y_%m_%d__%H_%M_%S')
    photo_file = bot.get_file(update.message.photo[-1].file_id)
    #photo_file.download('infected_image.jpg')
    picture_name = update.message.photo[-1].get_file().download('./input_img/' + str(update.message.chat_id) + '.jpg')

    update.message.reply_text('Awesome! I got the picture.  Now send me your location.')

    return LOCATION

def location(bot, update):
    global latitude
    global longitude

    latitude = update.message.location.latitude
    longitude = update.message.location.longitude


    update.message.reply_text('Awesome! Now I know where you at. Press /begin to start diagnosis')
Z
    return PROCESS

def process(bot, update):
    print(picture_name)
    test_image = image.load_img(img, target_size = (image_size, image_size))
    test_image = image.img_to_array(test_image) 
    test_image = np.expand_dims(test_image, axis = 0)
    result = model.predict(test_image * 100.0).round(2)
    #training_set.class_indice

    new_dict = {
        dis_classes[0]: result[0][0],
        dis_classes[1]: result[0][1],
        dis_classes[2]: result[0][2],
        dis_classes[3]: result[0][3],
        dis_classes[4]: result[0][4],
        dis_classes[5]: result[0][5],
        dis_classes[6]: result[0][6]
    }

    dict_dis = sorted(new_dict.items(), key=lambda x: x[1], reverse=True)
    print(dict_dis)
    dict_dis = dict(sorted(new_dict.items(), key=lambda x: x[1], reverse=True)[:3])
    max_val = max(dict_dis, key=dict_dis.get)

    plt.bar(range(len(dict_dis)), list(dict_dis.values()), align='center')
    x1,x2,y1,y2 = plt.axis()
    plt.axis((x1,x2,0,1))
    plt.xticks(range(len(dict_dis)), range(len(dict_dis)))
    plt.savefig('./temp/plots/tempfig.png')
    update.message.reply_text("Thank you!\n \nYou will recieve your report Soon")
    bot.send_photo(chat_id=update.message.chat_id, photo=open('./temp/plots/tempfig.png', 'rb'))
    os.remove('./temp/plots/tempfig.png')
    plt.cla()
    keys = list(dict_dis.keys())
    message_text = '0 ->' + str(keys[0]) + '\n1 ->' + str(keys[1]) + '\n2 ->' + str(keys[2]) 
    update.message.reply_text("Results are as follows: %s" % (message_text))   
    print(message_text) 

    return END_SESSION 

def done(bot, update):
    update.message.reply_text('Thank you! :) . Bye!!!')

    return ConversationHandler.END


def cancel(bot, update):
    update.message.reply_text('Bye! You cancelled the session',
                              reply_markup=ReplyKeyboardRemove())

    return ConversationHandler.END


def error(bot, update, error):
    logger.warning('Update "%s" caused error "%s"', update, error)

def main():
    updater = Updater("807487613:AAHkdroQt8josGco1Ct938qXe1_OvGd9E3M")

    dp = updater.dispatcher

    conv_handler = ConversationHandler(
        entry_points=[CommandHandler('start', start)],

        states={
            GET_OPTION: [CallbackQueryHandler(get_option)],

            PHOTO: [MessageHandler(Filters.photo, photo)],

            LOCATION: [MessageHandler(Filters.location, location)],

            PROCESS: [CommandHandler('begin', process)],

            END_SESSION: [CommandHandler('done', done)]

        },

        fallbacks=[CommandHandler('cancel', cancel)]
    )


    dp.add_handler(conv_handler)

    dp.add_error_handler(error)

    updater.start_polling()

    updater.idle()

if __name__ == '__main__':
    main()
...