Вы можете загрузить набор данных, используя пользовательский генератор данных
train_dataset = DatasetGenerator()
или загруженные данные
inps = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
tgts = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
train_dataset = TensorDataset(inps, tgts)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
epochs = 100
losses = []
for i in range(epochs):
for ii, (data, target) in enumerate(train_loader):
y_pred = model(data)
optimizer.zero_grad()
loss = criterion(y_pred, target)
losses.append(loss)
loss.backward()
optimizer.step()