Мне нужно создать собственный преобразователь для ввода в грейдер.
Грейдер передает список словарей в метод предиката илиgnast_proba моей оценки, а не в DataFrame. Это означает, что модель должна работать с обоими типами данных. По этой причине мне нужно предоставить пользовательский ColumnSelectTransformer, чтобы использовать вместо него собственный ColumnTransformer scikit-learn.
Это мой код для пользовательского преобразователя, который стремится отбрасывать нулевые значения в предоставленных столбцах.
simple_cols = ['BEDCERT', 'RESTOT', 'INHOSP', 'CCRC_FACIL', 'SFF', 'CHOW_LAST_12MOS', 'SPRINKLER_STATUS', 'EXP_TOTAL', 'ADJ_TOTAL']
class ColumnSelectTransformer(BaseEstimator, TransformerMixin):
def __init__(self, columns):
self.columns = columns
def fit(self, X, y=None):
return self
def transform(self, X):
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X)
X.dropna(inplace=True)
return X[self.columns].values()
simple_features = Pipeline([
('cst', ColumnSelectTransformer(simple_cols)),
])
Однако я не могу пройти следующие проверки утверждений
assert data['RESTOT'].isnull().sum() > 0
assert not np.isnan(simple_features.fit_transform(data)).any()
Я генерирую ошибку типа
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-44-922f08231b1f> in <module>()
1 assert not data['RESTOT'].isnull().sum() > 0
----> 2 assert not np.isnan(simple_features.fit_transform(data)).any()
/opt/conda/lib/python3.7/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
391 return Xt
392 if hasattr(last_step, 'fit_transform'):
--> 393 return last_step.fit_transform(Xt, y, **fit_params)
394 else:
395 return last_step.fit(Xt, y, **fit_params).transform(Xt)
/opt/conda/lib/python3.7/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
551 if y is None:
552 # fit method of arity 1 (unsupervised transformation)
--> 553 return self.fit(X, **fit_params).transform(X)
554 else:
555 # fit method of arity 2 (supervised transformation)
<ipython-input-42-e20ea4310864> in transform(self, X)
12 X = pd.DataFrame(X)
13 X.dropna(inplace=True)
---> 14 return X[self.columns].values()
15
16 simple_features = Pipeline([
TypeError: 'numpy.ndarray' object is not callable
Здесь приведены фактические данные, если кому-то нужен доступ.
%%bash
mkdir data
wget http://dataincubator-wqu.s3.amazonaws.com/mldata/providers-train.csv -nc -P ./ml-data
wget http://dataincubator-wqu.s3.amazonaws.com/mldata/providers-metadata.csv -nc -P ./ml-data
data = pd.read_csv('./ml-data/providers-train.csv', encoding='latin1')