Я создал эту функцию для вычисления матрицы путаницы. Я хотел бы использовать тепловую карту не по числам внутри корпуса, а по пропорции на линии. Значение,
5% 95%
0% 95%
будет
blue red
blue red
, тогда как теперь, если во второй строке нет данных пропорционально, то это дает:
blue red
blue blue
DoВы думаете, это будет возможно?
confusion_matrix = sklearn.metrics.confusion_matrix(Y,Y_predict_result) #we create a raw confusion matrix
cm_sum = np.sum(confusion_matrix, axis=1).reshape(-1,1) #we get the sum of the lines and reshape it (we re going to use it for the percentage)
cm_percentage = confusion_matrix / cm_sum.astype(float) * 100 #we get a matrix of percentage. (row proportion for every column)
annot = np.empty_like(confusion_matrix).astype(str) #we create a raw array for the annotation that we will put on the final result
n_rows, n_cols = confusion_matrix.shape #getting the size of the matrix
for i in range(0, n_rows): #here that part is for getting the right annotation at its place.
for j in range(0, n_cols): #the idea is that we want, the percentage, then the number that fits in it, and for diagonal elements, the sum of all the elements on the line.
p = cm_percentage[i, j]
c = confusion_matrix[i, j]
if i == j:
s = cm_sum[i]
annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s)
elif c == 0:
annot[i, j] = ''
else:
annot[i, j] = '%.1f%%\n%d' % (p, c)
fig, ax = plt.subplots(figsize=(10,10)) #we set the frame
sns.heatmap(confusion_matrix, annot=annot,fmt='', ax=ax, linewidths=.5, cmap = "coolwarm" )
#using heatmap and setting some parameter for the confusion matrix.
ax.set_xlabel('Predicted') #here this line and the next is for putting the meaning of the cases
ax.set_ylabel('True')
ax.set_title('Confusion Matrix') #title
ax.xaxis.set_ticklabels(labels) #putting the meaning of each column and row
ax.yaxis.set_ticklabels(labels)
ax.set_ylim(n_rows + 0.1,-0.1) #expanding the graph... without it, the squares are cut in the middle.
ax.set_xlim(-0.1, n_cols +0.1)
plt.show()
return