РЕДАКТИРОВАТЬ: Если вы уже используете NumPy, вы можете просто сделать это:
import numpy as np
# Make random data
np.random.seed(0)
x = np.random.binomial(n=20, p=0.5, size=1000000) / 20
bins = np.arange(0.55, 1.01, 0.05)
# One extra value for the upper bound of last bin
bins = np.append(bins, max(bins.max(), x.max()) + 1)
h, _ = np.histogram(x, bins)
result = np.cumsum(h)
print(result)
# [280645 354806 391658 406410 411048 412152 412356 412377 412378 412378]
Если вы имеете дело с большими массивами чисел, вы можете рассмотреть возможность использования NumPy . Но если вы используете простые списки Python, вы можете сделать это, например, так:
def how_many_bigger(nums, mins):
# List of counts for each minimum
counts = [0] * len(mins)
# For each number
for n in nums:
# For each minimum
for i, m in enumerate(mins):
# Add 1 to the count if the number is greater than the current minimum
if n >= m:
counts[i] += 1
return counts
# Test
import random
# Make random data
random.seed(0)
nums = [random.random() for _ in range(1_000_000)]
# Make minimums
mins = [i / 100. for i in range(55, 101, 5)]
print(mins)
# [0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]
count = how_many_bigger(nums, mins)
print(count)
# [449771, 399555, 349543, 299687, 249605, 199774, 149945, 99928, 49670, 0]