Включен минимальный жизнеспособный пример;)
Я хочу просто указать использовать параметры из GridSearchCV для использования конвейера .
#I want to create a SVM using a Pipeline, and validate the model (measure the accuracy)
#import libraries
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
#load test data
data = load_iris()
X_trainset, X_testset, y_trainset, y_testset = train_test_split(data['data'], data['target'], test_size=0.2)
#And here we prepare the pipeline
pipeline = Pipeline([('scaler', StandardScaler()), ('SVM', SVC())])
grid = GridSearchCV(pipeline, param_grid={'SVM__gamma':[0.1,0.01]}, cv=5)
grid.fit(X_trainset, y_trainset)
# (Done! Now I can print the accuracy and other metrics)
#Now I want to put together training set and validation set, to train the model before deployment
#Of course, I want to use the best parameters found by GridSearchCV
big_x = np.concatenate([X_trainset,X_testset])
big_y = np.concatenate([y_trainset,y_testset])
Здесь все работает без проблем. Затем я пишу эту строку:
model2 = pipeline.fit(big_x,big_y, grid.best_params_)
Ошибка!
TypeError: fit() takes from 2 to 3 positional arguments but 4 were given
Затем я попытался быть более явным:
model2 = pipeline.fit(big_x,big_y,fit_params=grid.best_params_)
Ошибка снова!
ValueError: Pipeline.fit does not accept the fit_params parameter. You can pass parameters to specific steps of your pipeline using the stepname__parameter format, e.g. `Pipeline.fit(X, y, logisticregression__sample_weight=sample_weight)`.
Затем я попытался (из любопытства) вручную вставить параметр:
pipeline.fit(big_x,big_y, SVM__gamma= 0.01) #Note: I may need to insert many parameters, not just one
Ошибка снова: (
TypeError: fit() got an unexpected keyword argument 'gamma'
Я не могу понять, почему он не находит Гамма. Я решил напечатать pipe.get_params (), чтобы иметь представление.
In [11]: print(pipeline.get_params())
Out [11]:
{'memory': None,
'steps': [('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('SVM', SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))],
'verbose': False,
'scaler': StandardScaler(copy=True, with_mean=True, with_std=True),
'SVM': SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False),
'scaler__copy': True, 'scaler__with_mean': True, 'scaler__with_std': True, 'SVM__C': 1.0, 'SVM__break_ties': False, 'SVM__cache_size': 200, 'SVM__class_weight': None, 'SVM__coef0': 0.0, 'SVM__decision_function_shape': 'ovr', 'SVM__degree': 3, 'SVM__gamma': 'scale', 'SVM__kernel': 'rbf', 'SVM__max_iter': -1, 'SVM__probability': False, 'SVM__random_state': None, 'SVM__shrinking': True, 'SVM__tol': 0.001, 'SVM__verbose': False}
Я могу найти SVM__gamma в списке! Так почему же возникает ошибка?
Версия Scikit: 0.22.1
Версия python: 3.7.6