Sklearn Decision Tree как слабый ученик в Adaboost - странное поведение - PullRequest
0 голосов
/ 06 января 2020

Я пытаюсь реализовать алгоритм Adaboost с использованием дерева решений sklearn в качестве слабого ученика - на каждом шаге я хочу выбрать одну функцию с одним порогом для классификации всех выборок.

У меня 1400 длинных векторов объектов и хочу пометить их 1 или -1. Это слова из оценок mov ie, а метка обозначает «плохо» или «хорошо». На некоторых из итераций дерево решений выбирает особенность, порог 0,5, и классифицирует все выборки как -1 (независимо от их значения), и на следующей итерации выбирает ту же особенность, на этот раз классифицируя выборки, как и предполагалось .

Может кто-нибудь найти причину для этого?

Отпечатки деревьев:


feat: 311
==================
|--- worst <= 0.50
   ---> class: 1.0

| --- worst >  0.50
   ---> class: -1.0

==================
alphas = 0.16872595425475514
feat: 27
==================
|--- bad <= 0.50
   ---> class: 1.0

|--- bad >  0.50
   --->class: -1.0

==================
alphas = 0.21421414954211687
feat: 371
==================
|--- boring <= 0.50
   --->class: -1.0

|--- boring >  0.50
   ---> class: -1.0

==================
alphas = 0.1881155411693614
feat: 371
==================
|--- boring <= 0.50
   ---> class: 1.0

|--- boring >  0.50
   ---> class: -1.0

==================
alphas = 0.12644785644997397
feat: 822
==================
|--- ridiculous <= 0.50
   ---> class: -1.0

|--- ridiculous >  0.50
   ---> class: -1.0

Код:

def run_adaboost(X_train, y_train, T):
    hypotheses = []
    alpha_vals = []
    num_of_samples = len(X_train)
    D = [1/num_of_samples for _ in range(num_of_samples)]
    for t in range(T):
        h = weak_learner(D, X_train, y_train)
        idx, threshold = h.tree_.feature[0], h.tree_.threshold[0]
        tup = (get_prediction(h, X_train[0]), idx, threshold)
        print_tree(h, [vocabulary[idx] for idx in range(len(X_train[0]))])
        hypotheses.append(tup)
        epsilon = 1-h.score(X_train, y_train, sample_weight=D)
        alpha = 0.5*np.log((1-epsilon)/epsilon)
        alpha_vals.append(alpha)
        D = new_distribution(D, X_train, y_train, alpha, h)

    return hypotheses, alpha_vals


##############################################

def weak_learner(D, X_train, y_train):
    clf = tree.DecisionTreeClassifier(max_depth=1, criterion="entropy")
    clf.fit(X_train, y_train, sample_weight=D)
    return clf


def new_distribution(D, X_train, y_train, alpha, h):
    Z = 0
    Dt = [0]*len(D)
    print(f"alphas = {alpha}")
    pred = h.predict(X_train)
    for i in range(len(X_train)):
        exponent = (-1) * alpha * y_train[i] * (pred[i])
        Z += D[i]*np.exp(exponent)
    for i in range(len(X_train)):
        exponent = (-1) * alpha * y_train[i] * (pred[i])
        Dt[i] = (D[i]*np.exp(exponent))/Z
    return Dt


def get_prediction(clf, vector):
    feat = clf.tree_.feature[0]
    print(f"feat: {feat}")
    vec = vector.copy()
    vec[feat] = 0
    vec = vec.reshape(1, -1)
    return int(clf.predict(vec)[0])


def print_tree(clf, feat_name):
    r = tree.export_text(clf, feat_name)
    print(r)
    print("==================")

##############################################


def main():
    data = parse_data()
    if not data:
        return
    (X_train, y_train, X_test, y_test, vocab) = data
    global vocabulary, X_test_g, y_test_g
    X_test_g, y_test_g = X_test, y_test
    vocabulary = vocab
    T = 80
    run_adaboost(X_train, y_train, T)

if __name__ == '__main__':
    main()
...