Я создаю NN общего назначения, которая классифицирует изображения (Dog / No Dog) и обзоры mov ie (Good / Bad). Я должен придерживаться очень специфической c архитектуры и функции потерь, поэтому изменение этих двух параметров кажется не в уравнении. Моя архитектура представляет собой двухслойную сеть с relu, за которой следуют сигмоид и функция кросс-энтропийной потери. Благодаря 1000 эпохам и скорости обучения около 0,001, я получаю 100-процентную точность обучения и 0,72 точность тестирования. Я искал предложения по повышению точности моего тестирования. Это схема того, что у меня есть:
def train_net(epochs,batch_size,train_x,train_y,model_size,lr):
n_x,n_h,n_y=model_size
model = Net(n_x, n_h, n_y)
optim = torch.optim.Adam(model.parameters(),lr=0.005)
loss_function = nn.BCELoss()
train_losses = []
accuracy = []
for epoch in range(epochs):
count=0
model.train()
train_loss = []
batch_accuracy = []
for idx in range(0, train_x.shape[0], batch_size):
batch_x = torch.from_numpy(train_x[idx : idx + batch_size]).float()
batch_y = torch.from_numpy(train_y[:,idx : idx + batch_size]).float()
model_output = model(batch_x)
batch_accuracy=[]
loss = loss_function(model_output, batch_y)
train_loss.append(loss.item())
preds = model_output > 0.5
nb_correct = (preds == batch_y).sum()
count+=nb_correct.item()
optim.zero_grad()
loss.backward()
# Scheduler made it worse
# scheduler.step(loss.item())
optim.step()
if epoch % 100 == 1:
train_losses.append(train_loss)
print("Iteration : {}, Training loss: {} ,Accuracy %: {}".format(epoch,np.mean(train_loss),(count/train_x.shape[0])*100))
plt.plot(np.squeeze(train_losses))
plt.ylabel('loss')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(lr))
plt.show()
return model
Параметры моей модели:
batch_size = 32
lr = 0.0001
epochs = 1500
n_x = 12288 # num_px * num_px * 3
n_h = 7
n_y = 1
model_size=n_x,n_h,n_y
model=train_net(epochs,batch_size,train_x,train_y,model_size,or)
и это этап тестирования.
model.eval() #Setting the model to eval mode, hence making it deterministic.
test_loss = []
count=0;
loss_function = nn.BCELoss()
for idx in range(0, test_x.shape[0], batch_size):
with torch.no_grad():
batch_x = torch.from_numpy(test_x[idx : idx + batch_size]).float()
batch_y = torch.from_numpy(test_y[:,idx : idx + batch_size]).float()
model_output = model(batch_x)
preds = model_output > 0.5
loss = loss_function(model_output, batch_y)
test_loss.append(loss.item())
nb_correct = (preds == batch_y).sum()
count+=nb_correct.item()
print("test loss: {},test accuracy: {}".format(np.mean(test_loss),count/test_x.shape[0]))
Вещи, которые я пробовал: возиться со скоростью обучения, набирать обороты, использовать планировщики и изменение размеров партии. Конечно, это были в основном догадки и не основанные на каких-либо действительных предположениях.