Модель машинного обучения SpaCy частично захватывает более длинные объекты. Как это решить? - PullRequest
0 голосов
/ 26 февраля 2020

Я обучил модель spaCy своим данным, используя уже существующую модель en_core_web_sm-2.2.0. В моих данных есть сущности, которые обученная модель фиксирует частично.

for text in ['KOYA MOTORS PRIVATE LTD.','KOYAL MOTORS PRIVATE LTD.' , 'PUTTAR MOTORS LIMITED' , 'BRENSON MOTORS LIMITED','MITASHI LIMITED','FEDERATION OF KARNATAKA CHAMBERS OF COMMERCE & INDUSTRY' ]:
    print("#####################")
    print(text , nlp_trained(text).ents)
    print("##")
    for i in nlp_trained(text):
        print(i,i.ent_iob_,i.ent_type_,i.pos_,i.tag_,i.head,i.lang_,i.lemma_)

Вывод:

#####################
KOYA MOTORS PRIVATE LTD. (MOTORS PRIVATE LTD.,)
##
KOYA O  PROPN NNP LTD en KOYA
MOTORS B ORG PROPN NNP LTD en MOTORS
PRIVATE I ORG PROPN NNP LTD en PRIVATE
LTD I ORG PROPN NNP LTD en LTD
. I ORG PUNCT . LTD en .
#####################
KOYAL MOTORS PRIVATE LTD. (KOYAL MOTORS PRIVATE LTD.,)
##
KOYAL B ORG PROPN NNP LTD en KOYAL
MOTORS I ORG PROPN NNP LTD en MOTORS
PRIVATE I ORG PROPN NNP LTD en PRIVATE
LTD I ORG PROPN NNP LTD en LTD
. I ORG PUNCT . LTD en .
#####################
PUTTAR MOTORS LIMITED (MOTORS LIMITED,)
##
PUTTAR O  NOUN NN LIMITED en puttar
MOTORS B ORG PROPN NNP LIMITED en MOTORS
LIMITED I ORG PROPN NNP LIMITED en LIMITED
#####################
BRENSON MOTORS LIMITED (BRENSON MOTORS LIMITED,)
##
BRENSON B ORG PROPN NNP LIMITED en BRENSON
MOTORS I ORG PROPN NNP LIMITED en MOTORS
LIMITED I ORG PROPN NNP LIMITED en LIMITED
#####################
MITASHI LIMITED ()
##
MITASHI O  PROPN NNP MITASHI en MITASHI
LIMITED O  PROPN NNP MITASHI en LIMITED
#####################
FEDERATION OF KARNATAKA CHAMBERS OF COMMERCE & INDUSTRY (KARNATAKA CHAMBERS OF COMMERCE & INDUSTRY,)
##
FEDERATION O  NOUN NN FEDERATION en federation
OF O  ADP IN FEDERATION en of
KARNATAKA B ORG PROPN NNP CHAMBERS en KARNATAKA
CHAMBERS I ORG NOUN NNS OF en chamber
OF I ORG ADP IN CHAMBERS en of
COMMERCE I ORG PROPN NNP OF en COMMERCE
& I ORG CCONJ CC COMMERCE en &
INDUSTRY I ORG PROPN NNP COMMERCE en INDUSTRY

Каковы возможные причины этой проблемы и как я могу ее исправить?

1 Ответ

0 голосов
/ 26 февраля 2020

Модель Spacy en_core_web_sm-2.2.0 не обучена таким словам, как KOYAL, KOYA и др. c. Один из способов заставить модель предсказывать такие слова, как KOYAL, KOYA, et c, - обновить модель en_core_web_sm-2.2.0.

Подробнее об этом можно узнать в здесь

Код должен выглядеть примерно так:

import random
from spacy.gold import GoldParse
from cytoolz import partition_all
# training data
TRAIN_DATA = [
    ("Where is ICICI bank located", {"entities": [(9, 18, "ORG")]}),
    ("I like Thodupuzha and Pala", {"entities": [(7, 16, "LOC"), (22, 25, "LOC")]}),
    ("Thodupuzha is a tourist place", {"entities": [(0, 9, "LOC")]}),
    ("Pala is famous for mangoes", {"entities": [(0, 3, "LOC")]}),
    ("ICICI bank is one of the largest bank in the world", {"entities": [(0, 9, "ORG")]}),
    ("ICICI bank has a branch in Thodupuzha", {"entities": [(0, 9, "ORG"), (27, 36, "LOC")]}),
]
# preparing the revision data
revision_data = []
for doc in nlp.pipe(list(zip(*TRAIN_DATA))[0]):
    tags = [w.tag_ for w in doc]
    heads = [w.head.i for w in doc]
    deps = [w.dep_ for w in doc]
    entities = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
    revision_data.append((doc, GoldParse(doc, tags=tags, heads=heads,
                                         deps=deps, entities=entities)))
# preparing the fine_tune_data
fine_tune_data = []
for raw_text, entity_offsets in TRAIN_DATA:
    doc = nlp.make_doc(raw_text)
    gold = GoldParse(doc, entities=entity_offsets['entities'])
    fine_tune_data.append((doc, gold))
# training the model
n_epoch = 10
batch_size = 2
for i in range(n_epoch):
    examples = revision_data + fine_tune_data
    losses = {}
    random.shuffle(examples)
    for batch in partition_all(batch_size, examples):
        docs, golds = zip(*batch)
        nlp.update(docs, golds, drop=0.0, losses=losses)
# finding ner with the updated model
nytimes = nlp(sentence)
entities = [(i, i.label_, i.label) for i in nytimes.ents]
print(entities)
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...