Я пытаюсь обучить модель Spacy распознавать несколько пользовательских NER, данные обучения приведены ниже, в основном это связано с распознаванием нескольких моделей серверов, даты в формате FY и типов HDD:
TRAIN_DATA = [('Send me the number of units shipped in FY21 for A566TY server', {'entities': [(39, 42, 'DateParse'),(48,53,'server')]}),
('Send me the number of units shipped in FY-21 for A5890Y server', {'entities': [(39, 43, 'DateParse'),(49,53,'server')]}),
('How many systems sold with 3.5 inch drives in FY20-Q2 for F567?', {'entities': [(46, 52, 'DateParse'),(58,61,'server'),(27,29,'HDD')]}),
('Total revenue in FY20Q2 for 3.5 HDD', {'entities': [(17, 22, 'DateParse'),(28,30,'HDD')]}),
('How many systems sold with 3.5 inch drives in FY20-Q2 for F567?', {'entities': [(46, 52, 'DateParse'),(58,61,'server'),(27,29,'HDD')]}),
('Total units shipped in FY2017-FY2021', {'entities': [(23, 28, 'DateParse'),(30,35,'DateParse')]}),
('Total units shipped in FY 18', {'entities': [(23, 27, 'DateParse')]}),
('Total units shipped between FY16 and FY2021', {'entities': [(28, 31, 'DateParse'),(37,42,'DateParse')]})
]
def train_spacy(data,iterations):
TRAIN_DATA = data
nlp = spacy.blank('en') # create blank Language class
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner, last=True)
# add labels
for _, annotations in TRAIN_DATA:
for ent in annotations.get('entities'):
ner.add_label(ent[2])
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(iterations):
print("Statring iteration " + str(itn))
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
texts, # batch of texts
annotations, # batch of annotations
drop=0.2, # dropout - make it harder to memorise data
losses=losses,
)
print("Losses", losses)
return nlp
Но при запуске кода даже на обучающих данных никакая сущность не возвращается.
prdnlp = train_spacy(TRAIN_DATA, 100)
for text, _ in TRAIN_DATA:
doc = prdnlp(text)
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
Вывод будет следующим:
![Output](https://i.stack.imgur.com/a1OnL.png)