Я изучаю науку о данных и машинное обучение. Я написал код для оптимизации градиентного спуска функции стоимости линейной регрессии без использования встроенной библиотеки python. Однако, чтобы подтвердить правильность моего кода и проверить результаты, я также реализовал это, используя встроенную библиотеку python. Полученные с помощью моего кода значения коэффициента и перехвата не соответствуют значениям коэффициента и перехвата, полученным с помощью встроенного модуля python. Пожалуйста, подскажите, в чем заключается ошибка моего метода оптимизации градиентного спуска в линейной регрессии?
Мой метод:
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor
Data=pd.DataFrame({'X': list(np.arange(0,10,1)), 'Y': [1,3,2,5,7,8,8,9,10,12]})
Data.head()
sb.scatterplot(x ='X', y = 'Y', data = Data)
plt.show()
#generating column of ones
X0 = np.ones(len(Data)).reshape(-1,1)
#print(X0.shape)
X = Data.drop(['Y'], axis = 1).values
X_new = np.concatenate((X0,X), axis = 1)
#print(X_new)
#print(X_new.shape)
Y = Data.loc[:,['Y']].values
#print(Y)
#print(Y.shape)
# initial theta
theta =np.random.randint(low=0, high=1, size= X_new.shape[1]).reshape(-1,1)
#print(theta.shape)
J_history = []
theta_history = [list(theta.flatten())]
#gradient descent implementation
iterations = 1000
alpha = 0.01
m = len(Y)
for iter in range(1,iterations):
H = X_new.dot(theta)
loss = (H-Y)
J = loss/(2*m)
J_history.append(J)
G = X_new.T.dot(loss)/m
theta_new = theta - alpha*G
theta_history.append(list(theta_new.flatten()))
theta = theta_new
# collecting costs (J) and coefficients (theta_0,theta_1)
theta_history.pop()
J_history = [i[0] for i in J_history]
params = pd.DataFrame()
params['J']=J_history
for i in range(len(theta_history[0])):
params['theta_'+str(i)]=[k[i] for k in theta_history]
idx = params[params['J']==min(params['J'])].index
values = params.iloc[idx[0]][1:params.shape[1]].tolist()
print('intercept: {}, coeff: {}'.format(values[0],values[1]))
с использованием встроенной библиотеки:
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor
Data=pd.DataFrame({'X': list(np.arange(0,10,1)), 'Y': [1,3,2,5,7,8,8,9,10,12]})
Data.head()
sb.scatterplot(x ='X', y = 'Y', data = Data)
plt.show()
model = SGDRegressor(loss = 'squared_loss', learning_rate = 'constant', eta0 = 0.01, max_iter= 1000)
model.fit(Data['X'].values.reshape(-1,1), Data['Y'].values.reshape(-1,1))
print('coeff: {}, intercept: {}'.format(model.coef_, model.intercept_))