Спасибо за поиск. Я пытаюсь обучить пользовательский распознаватель именованных сущностей, используя код с сайта Spacy. Моя проблема в том, что после того, как я провожу свои примеры через трейнер, он возвращает токены, но не сущности. Вот мои примеры, сохраненные в переменной to_train_ents
:
[('"We’re at the beginning of what we could do with laser ultrasound," says Brian W. Anthony, a principal research scientist in MIT’s Department of Mechanical Engineering and Institute for Medical Engineering and Science (IMES), a senior author on the paper.',
{'entities': [(72, 88, 'PERSON')]}),
('Early concepts for noncontact laser ultrasound for medical imaging originated from a Lincoln Laboratory program established by Rob Haupt of the Active Optical Systems Group and Chuck Wynn of the Advanced Capabilities and Technologies Group, who are co-authors on the new paper along with Matthew Johnson.',
{'entities': [(126, 135, 'PERSON'),
(176, 186, 'PERSON'),
(287, 302, 'PERSON')]}),
('From there, the research grew via collaboration with Anthony and his students, Xiang (Shawn) Zhang, who is now an MIT postdoc and is the paper’s first author, and recent doctoral graduate Jonathan Fincke, who is also a co-author.',
{'entities': [(78, 97, 'PERSON'), (187, 202, 'PERSON')]})]
Из того, что я могу сказать, они правильно отформатированы для передачи в трейнер. Вот код, используемый для обучения модели NER, из spacy.io:
def main(model = None, output_dir = None, n_iter = 100):
# Load the model, set up the pipeline and train the entity recognizer
if model is not None: # If model was specified...
nlp = spacy.load(model) # ...load the existing spaCy model
pprint("Loaded model '%s'" % model)
else:
nlp = spacy.blank("en") # ...otherwise, create a blank language class
print("Created blank 'en' model")
# Create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if "ner" not in nlp.pipe_names: # If Named Entity Recognition is not part of the pipeline...
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner, last = True) # ...add it to the pipeline
else:
ner = nlp.get_pipe("ner")
# Add labels
for _, annotations in to_train_ents:
for ent in annotations.get("entities"): # "get" is a way of retrieving items from dictionaries
ner.add_label(ent[2])
# Get names of other pipes to disable them during training (we want only NER)
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] # other_pipes is any pipe that is not NER
with nlp.disable_pipes(*other_pipes): # Train only NER
# Reset and initialize the weights randomly - but only if we're training a new model
if model is None:
nlp.begin_training()
for itn in range(n_iter):
random.shuffle(to_train_ents)
losses = {}
# Batch up the examples using spaCy's minibatch
batches = minibatch(to_train_ents, size = compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
texts, # Batch of texts
annotations, # Batch of annotations
drop = 0.5, # Dropout - make it harder to memorize data (adjustable variable)
losses = losses,
)
print("Losses", losses)
# Test the trained model
for text, _ in to_train_ents:
doc = nlp(text)
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# Save the model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# Test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
for text, _ in to_train_ents:
doc = nlp2(text)
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
Я говорю этой функции использовать модель engli sh и сохранять в выходной каталог 'nih_ner':
main(model = 'en', output_dir = 'nih_ner')
Вот результат:
"Loaded model 'en'"
Losses {'ner': 52.71057402440056}
Losses {'ner': 43.944127584481976}
Losses {'ner': 40.92080506101935}
~snip~
Losses {'ner': 8.647840025578502}
Losses {'ner': 0.001753763942560257}
Entities []
Tokens [('From', '', 2), ('there', '', 2), (',', '', 2), ('the', '', 2), ('research', '', 2), ('grew', '', 2), ('via', '', 2), ('collaboration', '', 2), ('with', '', 2), ('Anthony', '', 2), ('and', '', 2), ('his', '', 2), ('students', '', 2), (',', '', 2), ('Xiang', '', 2), ('(', '', 2), ('Shawn', '', 2), (')', '', 2), ('Zhang', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('now', '', 2), ('an', '', 2), ('MIT', '', 2), ('postdoc', '', 2), ('and', '', 2), ('is', '', 2), ('the', '', 2), ('paper', '', 2), ('’s', '', 2), ('first', '', 2), ('author', '', 2), (',', '', 2), ('and', '', 2), ('recent', '', 2), ('doctoral', '', 2), ('graduate', '', 2), ('Jonathan', '', 2), ('Fincke', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('also', '', 2), ('a', '', 2), ('co', '', 2), ('-', '', 2), ('author', '', 2), ('.', '', 2)]
Entities []
Tokens [('"', '', 2), ('We', '', 2), ('’re', '', 2), ('at', '', 2), ('the', '', 2), ('beginning', '', 2), ('of', '', 2), ('what', '', 2), ('we', '', 2), ('could', '', 2), ('do', '', 2), ('with', '', 2), ('laser', '', 2), ('ultrasound', '', 2), (',', '', 2), ('"', '', 2), ('says', '', 2), ('Brian', '', 2), ('W.', '', 2), ('Anthony', '', 2), (',', '', 2), ('a', '', 2), ('principal', '', 2), ('research', '', 2), ('scientist', '', 2), ('in', '', 2), ('MIT', '', 2), ('’s', '', 2), ('Department', '', 2), ('of', '', 2), ('Mechanical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Institute', '', 2), ('for', '', 2), ('Medical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Science', '', 2), ('(', '', 2), ('IMES', '', 2), (')', '', 2), (',', '', 2), ('a', '', 2), ('senior', '', 2), ('author', '', 2), ('on', '', 2), ('the', '', 2), ('paper', '', 2), ('.', '', 2)]
Entities []
Tokens [('Early', '', 2), ('concepts', '', 2), ('for', '', 2), ('noncontact', '', 2), ('laser', '', 2), ('ultrasound', '', 2), ('for', '', 2), ('medical', '', 2), ('imaging', '', 2), ('originated', '', 2), ('from', '', 2), ('a', '', 2), ('Lincoln', '', 2), ('Laboratory', '', 2), ('program', '', 2), ('established', '', 2), ('by', '', 2), ('Rob', '', 2), ('Haupt', '', 2), ('of', '', 2), ('the', '', 2), ('Active', '', 2), ('Optical', '', 2), ('Systems', '', 2), ('Group', '', 2), ('and', '', 2), ('Chuck', '', 2), ('Wynn', '', 2), ('of', '', 2), ('the', '', 2), ('Advanced', '', 2), ('Capabilities', '', 2), ('and', '', 2), ('Technologies', '', 2), ('Group', '', 2), (',', '', 2), ('who', '', 2), ('are', '', 2), ('co', '', 2), ('-', '', 2), ('authors', '', 2), ('on', '', 2), ('the', '', 2), ('new', '', 2), ('paper', '', 2), ('along', '', 2), ('with', '', 2), ('Matthew', '', 2), ('Johnson', '', 2), ('.', '', 2)]
Saved model to nih_ner
Loading from nih_ner
Entities []
Tokens [('From', '', 2), ('there', '', 2), (',', '', 2), ('the', '', 2), ('research', '', 2), ('grew', '', 2), ('via', '', 2), ('collaboration', '', 2), ('with', '', 2), ('Anthony', '', 2), ('and', '', 2), ('his', '', 2), ('students', '', 2), (',', '', 2), ('Xiang', '', 2), ('(', '', 2), ('Shawn', '', 2), (')', '', 2), ('Zhang', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('now', '', 2), ('an', '', 2), ('MIT', '', 2), ('postdoc', '', 2), ('and', '', 2), ('is', '', 2), ('the', '', 2), ('paper', '', 2), ('’s', '', 2), ('first', '', 2), ('author', '', 2), (',', '', 2), ('and', '', 2), ('recent', '', 2), ('doctoral', '', 2), ('graduate', '', 2), ('Jonathan', '', 2), ('Fincke', '', 2), (',', '', 2), ('who', '', 2), ('is', '', 2), ('also', '', 2), ('a', '', 2), ('co', '', 2), ('-', '', 2), ('author', '', 2), ('.', '', 2)]
Entities []
Tokens [('"', '', 2), ('We', '', 2), ('’re', '', 2), ('at', '', 2), ('the', '', 2), ('beginning', '', 2), ('of', '', 2), ('what', '', 2), ('we', '', 2), ('could', '', 2), ('do', '', 2), ('with', '', 2), ('laser', '', 2), ('ultrasound', '', 2), (',', '', 2), ('"', '', 2), ('says', '', 2), ('Brian', '', 2), ('W.', '', 2), ('Anthony', '', 2), (',', '', 2), ('a', '', 2), ('principal', '', 2), ('research', '', 2), ('scientist', '', 2), ('in', '', 2), ('MIT', '', 2), ('’s', '', 2), ('Department', '', 2), ('of', '', 2), ('Mechanical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Institute', '', 2), ('for', '', 2), ('Medical', '', 2), ('Engineering', '', 2), ('and', '', 2), ('Science', '', 2), ('(', '', 2), ('IMES', '', 2), (')', '', 2), (',', '', 2), ('a', '', 2), ('senior', '', 2), ('author', '', 2), ('on', '', 2), ('the', '', 2), ('paper', '', 2), ('.', '', 2)]
Entities []
Tokens [('Early', '', 2), ('concepts', '', 2), ('for', '', 2), ('noncontact', '', 2), ('laser', '', 2), ('ultrasound', '', 2), ('for', '', 2), ('medical', '', 2), ('imaging', '', 2), ('originated', '', 2), ('from', '', 2), ('a', '', 2), ('Lincoln', '', 2), ('Laboratory', '', 2), ('program', '', 2), ('established', '', 2), ('by', '', 2), ('Rob', '', 2), ('Haupt', '', 2), ('of', '', 2), ('the', '', 2), ('Active', '', 2), ('Optical', '', 2), ('Systems', '', 2), ('Group', '', 2), ('and', '', 2), ('Chuck', '', 2), ('Wynn', '', 2), ('of', '', 2), ('the', '', 2), ('Advanced', '', 2), ('Capabilities', '', 2), ('and', '', 2), ('Technologies', '', 2), ('Group', '', 2), (',', '', 2), ('who', '', 2), ('are', '', 2), ('co', '', 2), ('-', '', 2), ('authors', '', 2), ('on', '', 2), ('the', '', 2), ('new', '', 2), ('paper', '', 2), ('along', '', 2), ('with', '', 2), ('Matthew', '', 2), ('Johnson', '', 2), ('.', '', 2)]
Как видите, модель возвращает мне токены, но есть пустые списки, [], где должны быть распознанные объекты. Любые предложения относительно того, почему это происходит, были бы полезны.
Еще раз спасибо!