Похоже, что метод vcovHC()
для plm
автоматически оценивает устойчивые к кластеру стандартные ошибки, а для lm_robust()
- нет. Следовательно, оценка HC1
стандартной ошибки для plm
будет выглядеть завышенной по сравнению с lm_robust
(lm
в этом отношении).
Использование некоторых игрушечных данных:
library(sandwich)
library(tidyverse)
library(plm)
library(estimatr)
library(lmtest)
set.seed(1981)
x <- sin(1:1000)
y <- 1 + x + rnorm(1000)
f <- as.character(sort(rep(sample(1:100), 10)))
t <- as.character(rep(sort(sample(1:10)), 100))
dat <- tibble(y = y, x = x, f = f, t = t)
lm_fit <- lm(y ~ x + f + t, data = dat)
plm_fit <- plm(y ~ x, index = c("f", "t"), model = "within", effect = "twoways", data = dat)
rb_fit <- lm_robust(y ~ x, fixed_effects = ~ f + t, data = dat, se_type = "HC1", return_vcov = TRUE)
sqrt(vcovHC(lm_fit, type = "HC1")[2, 2])
#> [1] 0.04752337
sqrt(vcovHC(plm_fit, type = "HC1"))
#> x
#> x 0.05036414
#> attr(,"cluster")
#> [1] "group"
sqrt(rb_fit$vcov)
#> x
#> x 0.04752337
rb_fit <- lm_robust(y ~ x, fixed_effects = ~ f + t, data = dat, se_type = "HC3", return_vcov = TRUE)
sqrt(vcovHC(lm_fit, type = "HC3")[2, 2])
#> [1] 0.05041177
sqrt(vcovHC(plm_fit, type = "HC3"))
#> x
#> x 0.05042142
#> attr(,"cluster")
#> [1] "group"
sqrt(rb_fit$vcov)
#> x
#> x 0.05041177
Похоже, что в этих двух пакетах нет эквивалентных устойчивых к кластеру стандартных типов ошибок. Однако SE становятся ближе при указании устойчивых к кластеру SE в lm_robust()
:
rb_fit <- lm_robust(y ~ x, fixed_effects = ~ f + t, clusters = f, data = dat, se_type = "CR0")
summary(rb_fit)
#>
#> Call:
#> lm_robust(formula = y ~ x, data = dat, clusters = f, fixed_effects = ~f +
#> t, se_type = "CR0")
#>
#> Standard error type: CR0
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> x 0.925 0.05034 18.38 1.133e-33 0.8251 1.025 99
#>
#> Multiple R-squared: 0.3664 , Adjusted R-squared: 0.2888
#> Multiple R-squared (proj. model): 0.3101 , Adjusted R-squared (proj. model): 0.2256
#> F-statistic (proj. model): 337.7 on 1 and 99 DF, p-value: < 2.2e-16
coeftest(plm_fit, vcov. = vcovHC(plm_fit, type = "HC1"))
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> x 0.925009 0.050364 18.366 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Создано в 2020-04-16 пакетом Представить (v0.3.0 )