Я бы подошел к этому по-другому, получив углы повернутой ограничительной рамки контура после адаптивного порога. Вот мой код в Python / OpenCV.
Ввод:
import cv2
import numpy as np
# read image
img = cv2.imread("rectangle.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255-gray
# do adaptive threshold on gray image
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 17, 1)
thresh = 255-thresh
# apply morphology
kernel = np.ones((3,3), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
# separate horizontal and vertical lines to filter out spots outside the rectangle
kernel = np.ones((7,3), np.uint8)
vert = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
kernel = np.ones((3,7), np.uint8)
horiz = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
# combine
rect = cv2.add(horiz,vert)
# thin
kernel = np.ones((3,3), np.uint8)
rect = cv2.morphologyEx(rect, cv2.MORPH_ERODE, kernel)
# get largest contour
contours = cv2.findContours(rect, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for c in contours:
area_thresh = 0
area = cv2.contourArea(c)
if area > area_thresh:
area = area_thresh
big_contour = c
# get rotated rectangle from contour
rot_rect = cv2.minAreaRect(big_contour)
box = cv2.boxPoints(rot_rect)
box = np.int0(box)
print(box)
# draw rotated rectangle on copy of img
rot_bbox = img.copy()
cv2.drawContours(rot_bbox,[box],0,(0,0,255),2)
# write img with red rotated bounding box to disk
cv2.imwrite("rectangle_thresh.png", thresh)
cv2.imwrite("rectangle_outline.png", rect)
cv2.imwrite("rectangle_bounds.png", rot_bbox)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("MORPH", morph)
cv2.imshow("VERT", vert)
cv2.imshow("HORIZ", horiz)
cv2.imshow("RECT", rect)
cv2.imshow("BBOX", rot_bbox)
cv2.waitKey(0)
Предел изображения:
Извлеченная область прямоугольника:
Вращающаяся ограничивающая рамка на изображении:
Углы поворота ограничительной коробки:
[[446 335]
[163 328]
[168 117]
[451 124]]
ДОПОЛНЕНИЕ:
Вот немного более короткая версия кода, которая достижима путем добавления некоторого размытия по Гауссу перед установкой порога.
import cv2
import numpy as np
# read image
img = cv2.imread("rectangle.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255-gray
# blur image
blur = cv2.GaussianBlur(gray, (3,3), 0)
# do adaptive threshold on gray image
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 75, 2)
thresh = 255-thresh
# apply morphology
kernel = np.ones((5,5), np.uint8)
rect = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
rect = cv2.morphologyEx(rect, cv2.MORPH_CLOSE, kernel)
# thin
kernel = np.ones((5,5), np.uint8)
rect = cv2.morphologyEx(rect, cv2.MORPH_ERODE, kernel)
# get largest contour
contours = cv2.findContours(rect, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for c in contours:
area_thresh = 0
area = cv2.contourArea(c)
if area > area_thresh:
area = area_thresh
big_contour = c
# get rotated rectangle from contour
rot_rect = cv2.minAreaRect(big_contour)
box = cv2.boxPoints(rot_rect)
box = np.int0(box)
for p in box:
pt = (p[0],p[1])
print(pt)
# draw rotated rectangle on copy of img
rot_bbox = img.copy()
cv2.drawContours(rot_bbox,[box],0,(0,0,255),2)
# write img with red rotated bounding box to disk
cv2.imwrite("rectangle_thresh.png", thresh)
cv2.imwrite("rectangle_outline.png", rect)
cv2.imwrite("rectangle_bounds.png", rot_bbox)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("RECT", rect)
cv2.imshow("BBOX", rot_bbox)
cv2.waitKey(0)
Изображение с порогом:
Извлеченная область прямоугольника:
Вращающаяся ограничивающая рамка на изображении:
Вращающиеся ограничительные углы:
(444, 335)
(167, 330)
(170, 120)
(448, 125)