Игра с использованием Python scikit SVM Linear Support Vector Classification, и у меня возникает ошибка, когда я пытаюсь делать прогнозы:
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem import PorterStemmer
from nltk import word_tokenize
import string
# Function to pass the list to the Tf-idf vectorizer
def returnPhrase(inputList):
return inputList
# Pre-processing the sentence which we input to predict the emotion
def transformSentence(sentence):
s = []
sentence = sentence.replace('\n', '')
sentTokenized = word_tokenize(sentence)
s.append(sentTokenized)
sWithoutPunct = []
punctList = list(string.punctuation)
curSentList = s[0]
newSentList = []
for word in curSentList:
if word.lower() not in punctList:
newSentList.append(word.lower())
sWithoutPunct.append(newSentList)
mystemmer = PorterStemmer()
tokenziedStemmed = []
for i in range(0, len(sWithoutPunct)):
curList = sWithoutPunct[i]
newList = []
for word in curList:
newList.append(mystemmer.stem(word))
tokenziedStemmed.append(newList)
return tokenziedStemmed
# Extracting the features for SVM
myVectorizer = TfidfVectorizer(analyzer='word', tokenizer=returnPhrase, preprocessor=returnPhrase,
token_pattern=None,
ngram_range=(1, 3))
# The SVM Model
curC = 2 # cost factor in SVM
SVMClassifier = svm.LinearSVC(C=curC)
filename = 'finalized_model.sav'
# load the model from disk
loaded_model = pickle.load(open(filename, 'rb'))
# Input sentence
with open('trial_truth_001.txt', 'r') as file:
sent = file.read().replace('\n', '')
transformedTest = transformSentence(sent)
X_test = myVectorizer.transform(transformedTest).toarray()
Prediction = loaded_model.predict(X_test)
# Printing the predicted emotion
print(Prediction)
Это когда я пытаюсь использовать LinearSV C чтобы предсказать, что мне сообщили:
sklearn.exceptions.NotFittedError: Vocabulary not fitted or provided
Что мне здесь не хватает? Очевидно, это то, как я подгоняю и преобразовываю данные.