Я пытался провести различие между дефектными и не дефектными пластинами, используя re snet. У меня есть набор данных 2000 изображений для каждой из двух категорий. Но когда я тестировал его в режиме реального времени, он показывает «дефект», даже если под камерой нет объекта (ни светлой, ни дефектной пластины). Я ниже предоставил свой учебный код и код тестирования ниже. Пожалуйста, попробуйте выяснить, в чем может быть проблема
Код тестирования:
image =frame
#print(image.shape)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,160,255,0)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
height, width, channels = image.shape
min_x, min_y = width, height
max_x = max_y = 0
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 400:
(x, y, w, h) = cv2.boundingRect(cnt)
min_x, max_x = min(x, min_x), max(x + w, max_x)
min_y, max_y = min(y, min_y), max(y + h, max_y)
if (w>200) and (h>200):
roi1 = image[y:y + h, x:x + w]
roi = cv2.resize(roi1, (64, 64))
roi = roi.astype("float") / 255.0
# order channel dimensions (channels-first or channels-last)
# depending on our Keras backend, then add a batch dimension to
# the image
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
# make predictions on the input image
pred = model.predict(roi)
if (pred[0][1]) > .96:
label = "Defect"
color = (0, 0, 255)
confidence = pred[0][1]
elif (pred[0][0]) > .32:
label = "Fair"
color = (0, 255, 0)
confidence = pred[0][0]
#pred = pred.argmax(axis=1)[0]
# label = "Fair" if pred == 0 else "Defected"
# color = (0, 255, 0) if pred == 0 else (0, 0, 255)
cv2.putText(roi1, label, (3, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
color, 2)
cv2.putText(roi1, "confidence:"+str(confidence*100)+"%", (3, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(255,255,255), 2)
Код обучения:
NUM_EPOCHS = 500
BS = 32
# derive the path to the directories containing the training,
# validation, and testing splits, respectively
TRAIN_PATH = os.path.sep.join([args["dataset"], "training"])
VAL_PATH = os.path.sep.join([args["dataset"], "validation"])
TEST_PATH = os.path.sep.join([args["dataset"], "testing"])
# determine the total number of image paths in training, validation,
# and testing directories
totalTrain = len(list(paths.list_images(TRAIN_PATH)))
totalVal = len(list(paths.list_images(VAL_PATH)))
totalTest = len(list(paths.list_images(TEST_PATH)))
# initialize the training training data augmentation object
trainAug = ImageDataGenerator(
rescale=1 / 255.0,
rotation_range=20,
zoom_range=0.05,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
horizontal_flip=True,
fill_mode="nearest")
# initialize the validation (and testing) data augmentation object
valAug = ImageDataGenerator(rescale=1 / 255.0)
# initialize the training generator
trainGen = trainAug.flow_from_directory(
TRAIN_PATH,
class_mode="categorical",
target_size=(64, 64),
color_mode="rgb",
shuffle=True,
batch_size=32)
# initialize the validation generator
valGen = valAug.flow_from_directory(
VAL_PATH,
class_mode="categorical",
target_size=(64, 64),
color_mode="rgb",
shuffle=False,
batch_size=BS)
# initialize the testing generator
testGen = valAug.flow_from_directory(
TEST_PATH,
class_mode="categorical",
target_size=(64, 64),
color_mode="rgb",
shuffle=False,
batch_size=BS)
# initialize our Keras implementation of ResNet model and compile it
model = ResNet.build(64, 64, 3, 2, (2, 2, 3),
(32, 64, 128, 256), reg=0.0005)
opt = SGD(lr=1e-1, momentum=0.9, decay=1e-1 / NUM_EPOCHS)
model.compile(loss="binary_crossentropy", optimizer=opt,
metrics=["accuracy"])
# train our Keras model
H = model.fit_generator(
trainGen,
steps_per_epoch=totalTrain // BS,
validation_data=valGen,
validation_steps=totalVal // BS,
epochs=NUM_EPOCHS)
# reset the testing generator and then use our trained model to
# make predictions on the data
print("[INFO] evaluating network...")
testGen.reset()
predIdxs = model.predict_generator(testGen,
steps=(totalTest // BS) + 1)
# for each image in the testing set we need to find the index of the
# label with corresponding largest predicted probability
predIdxs = np.argmax(predIdxs, axis=1)
# show a nicely formatted classification report
print(classification_report(testGen.classes, predIdxs,
target_names=testGen.class_indices.keys()))
# save the network to disk
print("[INFO] serializing network to '{}'...".format(args["model"]))
model.save(args["model"])
Когда я проводил тестирование с помощью видео, оно показывало сродство к дефектным пластинам, показатель достоверности для светлых пластинок был очень низким, а для дефектных - очень высоким.