Вы должны понимать, что расчет подразумеваемой волатильности вычислительно дорог, если вам нужны числа в реальном времени, чем, возможно, python не лучшее решение.
Вот пример функций, которые вам могут понадобиться:
import numpy as np
from scipy.stats import norm
N = norm.cdf
def bs_call(S, K, T, r, vol):
d1 = (np.log(S/K) + (r + 0.5*vol**2)*T) / (vol*np.sqrt(T))
d2 = d1 - vol * np.sqrt(T)
return S * norm.cdf(d1) - np.exp(-r * T) * K * norm.cdf(d2)
def bs_vega(S, K, T, r, sigma):
d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
return S * norm.pdf(d1) * np.sqrt(T)
def find_vol(target_value, S, K, T, r, *args):
MAX_ITERATIONS = 200
PRECISION = 1.0e-5
sigma = 0.5
for i in range(0, MAX_ITERATIONS):
price = bs_call(S, K, T, r, sigma)
vega = bs_vega(S, K, T, r, sigma)
diff = target_value - price # our root
if (abs(diff) < PRECISION):
return sigma
sigma = sigma + diff/vega # f(x) / f'(x)
return sigma # value wasn't found, return best guess so far
Достаточно быстро вычислить одно значение 1013 *
Но если вы попытаетесь вычислить много, вы поймете, что это займет некоторое время ...
%%time
size = 10000
S = np.random.randint(100, 200, size)
K = S * 1.25
T = np.ones(size)
R = np.random.randint(0, 3, size) / 100
vols = np.random.randint(15, 50, size) / 100
prices = bs_call(S, K, T, R, vols)
params = np.vstack((prices, S, K, T, R, vols))
vols = list(map(find_vol, *params))
Время стены: 10,5 с