Я новичок в использовании python. Я пытаюсь запустить объяснение извести для более чем 10000 образцов. Я использую модель 1D-CNN keras для объяснения.
import numpy as np
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv1D, Activation, Flatten, Dense
from keras.optimizers import Adam
a = np.array([[0,1,2,9,3], [0,5,1,33,6], [1, 12,1,8,9]])
train = np.reshape(a[:,1:],(a[:,1:].shape[0], a[:,1:].shape[1],1))
y_train = keras.utils.to_categorical(a[:,:1])
model = Sequential()
model.add(Conv1D(filters=2, kernel_size=2, strides=1, activation='relu', padding="same", input_shape=(train.shape[1], 1)))
model.add(Flatten())
model.add(Dense(2, activation='sigmoid'))
model.compile(loss=keras.losses.binary_crossentropy,
optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False),
metrics=['accuracy'])
model.fit(train, y_train, epochs=3, verbose=1)
import lime
import lime.lime_tabular
explainer = lime.lime_tabular.RecurrentTabularExplainer(train, training_labels=y_train ,
class_names=['0','1'], feature_names=['feat'])
result = []
def explain_lime(model_keras, input, numFeatures):
for i in range(train.shape[0]):
explanation = explainer.explain_instance(input[i], model.predict, num_samples=numFeatures)
expMat = explanation.as_list()
result.append(expMat)
return print(f'{i} finished.')
explain_lime(model_keras=model,input=train , numFeatures=4) # works well
Как я могу сделать это с многопроцессорными библиотеками. Я пробовал какое-то решение, но безуспешно
from joblib import Parallel, delayed
results = Parallel(n_jobs=-1, backend="threading")(map(delayed(explain_lime), model, train, 5))
results = Parallel(n_jobs=-1, backend="threading")(map(delayed(explain_lime), model, train, 5))
TypeError: 'Sequential' object is not iterable
import multiprocessing
pool = multiprocessing.Pool(processes=40)
results = pool.map(explain_lime(model, train, 5))
TypeError: map() missing 1 required positional argument: 'iterable'
Я не понимаю, происходит ли ошибка из моего кода или из-за несовместимости функции lime.