Здесь у вас есть полный рабочий пример с включенным прогнозом. Наиболее важной частью является определение различных кодировщиков меток для каждой функции, чтобы вы могли сопоставить новые данные с одной и той же кодировкой, иначе вы столкнетесь с ошибками (которые теперь могут отображаться, но вы заметите, когда вычисляете точность):
dataset = pd.DataFrame({'Consignor Code':["6402106844","6402106844","6402106844","6402107662","6402107662","6402107662","6408507648"],
'Consignee Code': ["66903717","66903717","6404814143","66974631","6404518090","6404518090","6403601344"],
'Origin':["DKCPH","DKCPH","DKCPH","DKCPH","DKCPH","DKBLL","DKCPH"],
'Destination':["CNPVG","CNPVG","CNPVG","VNSGN","THBKK","THBKK","USTPA"],
'Carrier Code':["6402746387","6402746387","6402746387","6402746393","6402746393","6402746393","66565231"]})
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import make_scorer, accuracy_score
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.externals import joblib
from sklearn import preprocessing
import pandas as pd
#Import the dataset (A CSV file)
#Drop any rows containing NaN values
dataset.dropna(subset=['Consignor Code', 'Consignee Code',
'Origin', 'Destination', 'Carrier Code'], inplace=True)
#Define our target (What we want to be able to predict)
target = dataset.pop('Destination')
#Convert all our data to numeric values, so we can use the .fit function.
#For that, we use LabelEncoder
le_origin = preprocessing.LabelEncoder()
le_consignor = preprocessing.LabelEncoder()
le_consignee = preprocessing.LabelEncoder()
le_carrier = preprocessing.LabelEncoder()
le_target = preprocessing.LabelEncoder()
target = le_target.fit_transform(list(target))
dataset['Origin'] = le_origin.fit_transform(list(dataset['Origin']))
dataset['Consignor Code'] = le_consignor.fit_transform(list(dataset['Consignor Code']))
dataset['Consignee Code'] = le_consignee.fit_transform(list(dataset['Consignee Code']))
dataset['Carrier Code'] = le_carrier.fit_transform(list(dataset['Carrier Code']))
#Prepare the dataset.
X_train, X_test, y_train, y_test = train_test_split(
dataset, target, test_size=0.3, random_state=42)
#Prepare the model and .fit it.
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
#Make a prediction on the test set.
predictions = model.predict(X_test)
#Print the accuracy score.
print("Accuracy score: {}".format(accuracy_score(y_test, predictions)))
new_input = ["6408507648","6403601344","DKCPH","66565231"]
fitted_new_input = np.array([le_consignor.transform([new_input[0]])[0],
le_consignee.transform([new_input[1]])[0],
le_origin.transform([new_input[2]])[0],
le_carrier.transform([new_input[3]])[0]])
new_predictions = model.predict(fitted_new_input.reshape(1,-1))
print(le_target.inverse_transform(new_predictions))
Наконец, ваше дерево предсказывает:
['THBKK']