Симпимное имя Хевисайд не определено - PullRequest
2 голосов
/ 11 февраля 2020

Функция Heaviside должна быть встроена в Sympy и Numpy, но следующий код выдает ошибку Name Heaviside not defined. Попытка определить саму функцию Хевисайда в коде до того, как числовые вычисления, которые будут использовать ее (на основе трассировки), ничего не сделали - я думаю, это должно быть определено в lambdifygenerated. Есть ли обходной путь?

from sympy import *
from IPython.display import display
mux, s, Px, Py, Pxe, Pye = symbols("mu_X s P_X P_Y P_X^* P_Y^*", positive=True)
vx, vy, cx, cy = symbols("v_X v_Y c_X c_Y", real=True)
pix = (Px-cx)*( mux*integrate(integrate(1,(vx,Min(1,Max(0,Px+Max(0,vy-Pye-s))),1)),(vy,0,1))
      +(1-mux)*integrate(integrate(1,(vx,Min(1,Max(0,Max(Pxe+s,Px)+Max(0,vy-Pye))),1)),(vy,0,1))
     )
piy = (Py-cy)*( (1-mux)*integrate(integrate(1,(vy,Min(1,Max(0,Py+Max(0,vx-Pxe-s))),1)),(vx,0,1))
      +mux*integrate(integrate(1,(vy,Min(1,Max(0,Max(Pye+s,Py)+Max(0,vx-Pxe))),1)),(vx,0,1))
     )
focx =diff(pix,Px)
focy =diff(piy,Py)
focxeq=focx.subs(Px,Pxe)
focyeq=focy.subs(Py,Pye)

import numpy as np
focx_lambda = lambdify((Pxe,Pye), focxeq, modules=['numpy', 'sympy'])
focy_lambda = lambdify((Pxe,Pye), focyeq, modules=['numpy', 'sympy'])
nsolve([focxeq.subs({mux:0.4,s:0.05,cx:0,cy:0.1}).evalf(),focyeq.subs({mux:0.4,s:0.05,cx:0,cy:0.1}).evalf()],(Pxe,Pye),(0.3,0.4))

Трассировка выглядит следующим образом:

--------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-10-b7bc7e96827d> in <module>
     26 focx_lambda = lambdify((Pxe,Pye), focxeq, modules=['numpy', 'sympy'])
     27 focy_lambda = lambdify((Pxe,Pye), focyeq, modules=['numpy', 'sympy'])
---> 28 nsolve([focxeq.subs({mux:0.4,s:0.05,cx:0,cy:0.1}).evalf(),focyeq.subs({mux:0.4,s:0.05,cx:0,cy:0.1}).evalf()],(Pxe,Pye),(0.3,0.4))
     29 mux=0.4
     30 s=0.05

~/anaconda3/lib/python3.6/site-packages/sympy/utilities/decorator.py in func_wrapper(*args, **kwargs)
     88         dps = mpmath.mp.dps
     89         try:
---> 90             return func(*args, **kwargs)
     91         finally:
     92             mpmath.mp.dps = dps

~/anaconda3/lib/python3.6/site-packages/sympy/solvers/solvers.py in nsolve(*args, **kwargs)
   3045     J = lambdify(fargs, J, modules)
   3046     # solve the system numerically
-> 3047     x = findroot(f, x0, J=J, **kwargs)
   3048     if as_dict:
   3049         return [dict(zip(fargs, [sympify(xi) for xi in x]))]

~/anaconda3/lib/python3.6/site-packages/mpmath/calculus/optimization.py in findroot(ctx, f, x0, solver, tol, verbose, verify, **kwargs)
    926         # detect multidimensional functions
    927         try:
--> 928             fx = f(*x0)
    929             multidimensional = isinstance(fx, (list, tuple, ctx.matrix))
    930         except TypeError:

<lambdifygenerated-23> in _lambdifygenerated(Dummy_4515, _Dummy_4514)
      1 def _lambdifygenerated(Dummy_4515, _Dummy_4514):
----> 2     return (ImmutableDenseMatrix([[Dummy_4515*(mpf((0, 3602879701896397, -53, 52))*((-(_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Heaviside(1 - Dummy_4515)*Heaviside(1 - Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Heaviside(1 - Dummy_4515)*Heaviside(1 - Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52))) - Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))) if (Dummy_4515 >= 1) else (-(_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Heaviside(1 - Dummy_4515)*Heaviside(1 - Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Heaviside(1 - Dummy_4515)*Heaviside(1 - Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) - Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))))) + mpf((0, 5404319552844595, -53, 53))*((0) if (Dummy_4515 >= mpf((0, 4278419646001971, -52, 52))) else (-(_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Heaviside(1 - Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + 1))*Heaviside(_Dummy_4514 - Dummy_4515 - Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52))) + 1) + Heaviside(1 - Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + 1))*Heaviside(_Dummy_4514 - Dummy_4515 - Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52))) + 1)*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 1, 0, 1))))) if (Dummy_4515 >= 1) else (0))) + mpf((0, 3602879701896397, -53, 52))*((-(_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52))) + (_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52)))**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))**2) if (Dummy_4515 >= 1) else ((mpf((0, 1, 0, 1)) - Dummy_4515)*Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52))) - (_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52))) + (_Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), _Dummy_4514 + mpf((0, 3602879701896397, -56, 52)))**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514 + mpf((0, 3602879701896397, -56, 52)), _Dummy_4514 - Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))**2)) + mpf((0, 5404319552844595, -53, 53))*((-(_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), _Dummy_4514) + (_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), _Dummy_4514)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52))))**2) if (Dummy_4515 >= mpf((0, 4278419646001971, -52, 52))) else (-(_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), _Dummy_4514) + (_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 1, 0, 1)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), _Dummy_4514)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 1, 0, 1))))**2) if (Dummy_4515 >= 1) else ((mpf((0, 4278419646001971, -52, 52)) - Dummy_4515)*Min(mpf((0, 1, 0, 1)), _Dummy_4514) - (_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), _Dummy_4514) + (_Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), _Dummy_4514)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(_Dummy_4514, _Dummy_4514 - Dummy_4515 + mpf((0, 4278419646001971, -52, 52))))**2))], [(_Dummy_4514 + mpf((1, 3602879701896397, -55, 52)))*(mpf((0, 5404319552844595, -53, 53))*((-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Heaviside(1 - _Dummy_4514)*Heaviside(1 - Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Heaviside(1 - _Dummy_4514)*Heaviside(1 - Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52))) - Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))) if (_Dummy_4514 >= 1) else (-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Heaviside(1 - _Dummy_4514)*Heaviside(1 - Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + Heaviside(1 - _Dummy_4514)*Heaviside(1 - Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) - Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))))) + mpf((0, 3602879701896397, -53, 52))*((0) if (_Dummy_4514 >= mpf((0, 4278419646001971, -52, 52))) else (-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Heaviside(1 - Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + 1))*Heaviside(-_Dummy_4514 + Dummy_4515 - Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52))) + 1) + Heaviside(1 - Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + 1))*Heaviside(-_Dummy_4514 + Dummy_4515 - Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52))) + 1)*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 1, 0, 1))))) if (_Dummy_4514 >= 1) else (0))) + mpf((0, 5404319552844595, -53, 53))*((-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52))) + (-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52)))**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))**2) if (_Dummy_4514 >= 1) else ((mpf((0, 1, 0, 1)) - _Dummy_4514)*Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52))) - (-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52))) + (-_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Dummy_4515 + mpf((0, 3602879701896397, -56, 52)))**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515 + mpf((0, 3602879701896397, -56, 52)), -_Dummy_4514 + Dummy_4515 + mpf((0, 4728779608739021, -52, 53))))**2)) + mpf((0, 3602879701896397, -53, 52))*((-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Dummy_4515) + (-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Dummy_4515)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52))))**2) if (_Dummy_4514 >= mpf((0, 4278419646001971, -52, 52))) else (-(-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Dummy_4515) + (-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 1, 0, 1)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Dummy_4515)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 1, 0, 1))))**2) if (_Dummy_4514 >= 1) else ((mpf((0, 4278419646001971, -52, 52)) - _Dummy_4514)*Min(mpf((0, 1, 0, 1)), Dummy_4515) - (-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Dummy_4515) + (-_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52)))) + mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Dummy_4515)**2 - mpf((0, 1, -1, 1))*Min(mpf((0, 1, 0, 1)), Max(Dummy_4515, -_Dummy_4514 + Dummy_4515 + mpf((0, 4278419646001971, -52, 52))))**2))]]))

NameError: name 'Heaviside' is not defined

Я добавил focx_lambda = lambdify((Pxe,Pye), focxeq, modules=['numpy', 'sympy']) на основе ответа на (Некоторая функция) не определена с SymPy Lambdify но это ничего не изменило.

То, как я сам определил Хевисайда, было

def Heaviside(x):
    if x<0:
        out=0
    else:
        out=1
    return out

Я также на всякий случай попробовал from numpy import *. Это ничего не изменило.

1 Ответ

1 голос
/ 12 февраля 2020

Несколько проблем с lambdify, кажется, возникают одновременно. Я думаю, я мог бы заставить вещи работать, но вы должны проверить, имеет ли это смысл, так как я не знаком с конкретными уравнениями c.

В общем, вызов from sympy import * вместе с from numpy import * создает много путаницы. Многие функции в обеих библиотеках имеют одно и то же имя, и им действительно не нравится работать с переменными друг друга.

С другой стороны, lambdify плохо работает с Heaviside. Более того, функция в numpy является строчной , и хочет два аргумента: значение x и x2, чтобы решить, что должно произойти для x==0. В качестве исправления приведенный ниже код заменяет «Хевисайд» на lambda x: np.heaviside(x, 1).

Я не мог заставить симпози nsolve работать с этими функциями, поэтому я попробовал scipy fsolve. fsolve также требуется некоторое жонглирование для работы с набором функций.

При создании focx_lambda важно, чтобы все переменные, кроме параметров функции Pxe и Pye, получали фиксированное значение. Итак, я подставил их при выполнении lambdify.

from sympy import symbols, integrate, Min, Max, diff, lambdify
from IPython.display import display

mux, s, Px, Py, Pxe, Pye = symbols("mu_X s P_X P_Y P_X^* P_Y^*", positive=True)
vx, vy, cx, cy = symbols("v_X v_Y c_X c_Y", real=True)
pix = (Px - cx) * (mux * integrate(integrate(1, (vx, Min(1, Max(0, Px + Max(0, vy - Pye - s))), 1)), (vy, 0, 1))
                   + (1 - mux) * integrate(integrate(1, (vx, Min(1, Max(0, Max(Pxe + s, Px) + Max(0, vy - Pye))), 1)),
                                           (vy, 0, 1))
                   )
piy = (Py - cy) * ((1 - mux) * integrate(integrate(1, (vy, Min(1, Max(0, Py + Max(0, vx - Pxe - s))), 1)), (vx, 0, 1))
                   + mux * integrate(integrate(1, (vy, Min(1, Max(0, Max(Pye + s, Py) + Max(0, vx - Pxe))), 1)),
                                     (vx, 0, 1))
                   )
focx = diff(pix, Px)
focy = diff(piy, Py)
focxeq = focx.subs(Px, Pxe)
focyeq = focy.subs(Py, Pye)

import numpy as np
from scipy.optimize import fsolve

modules = [{'Heaviside': lambda x: np.heaviside(x, 1)}, 'numpy']
values_for_parameters = {mux: 0.4, s: 0.05, cx: 0, cy: 0.1}
focx_lambda = lambdify((Pxe, Pye), focxeq.subs(values_for_parameters), modules=modules)
focy_lambda = lambdify((Pxe, Pye), focyeq.subs(values_for_parameters), modules=modules)

print(focx_lambda(0.3, 0.4))  # we need to check that the lambdify works, so this should print a floating point number
print(focy_lambda(0.3, 0.4))

def equations(p):
    x, y = p
    return focx_lambda(x, y), focy_lambda(x, y)

sol = fsolve(equations, (0.3, 0.4))
print(sol)  # [0.64701372 0.61726372]
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...