Я создал решение. Я был ошеломлен полной работой, но как только я понял, что ее можно разбить на небольшие работы, я смог решить эти мелкие задачи по одной. Процесс не жесткий. Планирование является сложной частью. Так что теперь я делюсь своим результатом со всеми, в случае, если у кого-то есть та же самая загадка (я уже заметил две звезды бронирования, означающие, что кто-то заинтересован). Вуаля!
import pandas as pd
data = [['1_A',1, 22, 4],['1_A', -1, 10, 11 ],['1_B',2, 15, 9],['1_B',6, 1, 2],['1_A',2, 33, 43 ],['1_A',5, 50, 22 ],['1_A',3, 5 , 122],['1_B',1, 30, 8],['1_A',4, 1 , 2]]
df_1 = pd.DataFrame(data, columns = ['key', 'group', 'v1', 'v2'])
df_2 = df_1.sort(['key', 'group'])
def f1(df, thresh):
myList = []
bin = 0
sum_v1 = 0
sum_v2 = 0
new_df = pd.DataFrame(columns = ['key', 'group', 'v1', 'v2', 'sum_v1', 'sum_v2', 'bin'])
for i, (key, group, v1, v2) in df.iterrows():
if key not in myList:
myList.append(key)
bin = 1
sum_v1 = v1
sum_v2 = v2
else:
if sum_v1 < thresh:
bin += 0
sum_v1 += v1
sum_v2 += v2
else:
bin += 1
sum_v1 = v1
sum_v2 = v2
new_df.loc[i, ['key']] = key
new_df.loc[i, ['group']] = group
new_df.loc[i, ['v1']] = v1
new_df.loc[i, ['v2']] = v2
new_df.loc[i, ['sum_v1']] = sum_v1
new_df.loc[i, ['sum_v2']] = sum_v2
new_df.loc[i, ['bin']] = bin
return new_df
new_df_2 = f1(df_2, 30)
df_3 = new_df_2.groupby(['key', 'bin']).agg({'v1': "sum", 'v2': "sum"}).reset_index()
df_3.rename(columns={'v2': 'a_c_sum_v2', 'v1': 'a_c_sum_v1'}, inplace=True)
def f2(df, thresh):
df_tmp = df.sort(['key', 'bin'], ascending=[1, 0])
myList = []
bin_d = 0
sum_v1_d = 0
sum_v2_d = 0
new_df = pd.DataFrame(columns = ['key', 'bin', 'a_c_sum_v1', 'a_c_sum_v2', 'sum_v1_d', 'sum_v2_d', 'bin_d'])
for i, (key, bin, v1, v2) in df_tmp.iterrows():
if key not in myList:
myList.append(key)
bin_d = 1
sum_v1_d = v1
sum_v2_d = v2
else:
if sum_v1_d < thresh:
bin_d += 0
sum_v1_d += v1
sum_v2_d += v2
else:
bin_d += 1
sum_v1_d = v1
sum_v2_d = v2
new_df.loc[i, ['key']] = key
new_df.loc[i, ['bin']] = bin
new_df.loc[i, ['a_c_sum_v1']] = v1
new_df.loc[i, ['a_c_sum_v2']] = v2
new_df.loc[i, ['sum_v1_d']] = sum_v1_d
new_df.loc[i, ['sum_v2_d']] = sum_v2_d
new_df.loc[i, ['bin_d']] = bin_d
return new_df
new_df_3 = f2(df_3, 30)
df_4 = new_df_3.groupby(['key', 'bin_d']).agg({'a_c_sum_v1': "sum", 'a_c_sum_v2': "sum"}).reset_index()
df_4.rename(columns={'a_c_sum_v2': 'sum_v2', 'a_c_sum_v1': 'sum_v1'}, inplace=True)
m_1 = pd.merge(new_df_3[['key', 'bin', 'bin_d']], df_4[['key', 'bin_d', 'sum_v1', 'sum_v2']], left_on=['key', 'bin_d'], right_on=['key', 'bin_d'], how='left')
m_2 = pd.merge(new_df_2[['key', 'group', 'bin']], m_1[['key', 'bin', 'bin_d', 'sum_v1', 'sum_v2']], left_on=['key', 'bin'], right_on=['key', 'bin'], how='left')
m_3 = pd.merge(df_1[['key', 'group', 'v1', 'v2']], m_2[['key', 'group', 'bin_d', 'sum_v1', 'sum_v2']], left_on=['key', 'group'], right_on=['key', 'group'], how='left')
m_3.rename(columns={'bin_d': 'bin'}, inplace=True)
m_3.sort(['key', 'group'])