Я действительно новичок в Deep Learning, так что извините за недостаток знаний в этой области. В общем, я пытаюсь проверить мою обученную модель .pb с помощью видеопотока. Вот код, который я использую для этого.
# Import packages
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Import utilites
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = 'C:/path/folder/frozen_inference_graph.pb'
# Path to label map file
PATH_TO_LABELS = 'C:/path/folder/label_map.pbtxt'
# Path to video
PATH_TO_VIDEO = 'C:/path/folder/video.MP4'
# Number of classes the object detector can identify
NUM_CLASSES = 1
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
video = cv2.VideoCapture(PATH_TO_VIDEO)
while(video.isOpened()):
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
ret, frame = video.read()
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.80)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
# Clean up
video.release()
cv2.destroyAllWindows()
Все идет хорошо, я могу запустить его, и я вижу, как открывается видеопоток, и даже хорошо вижу прямоугольники, нарисованные на обнаруженных объектах. Однако через 1-2 секунды программа останавливается и завершается со следующей ошибкой:
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "C:\Users\User\Anaconda3\lib\site-packages\numpy\core\numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'
Я понятия не имею, как обойти эту проблему, потому что в ошибке я даже не понимаю, какая программа это говорит о том, что моя программа имеет только 100 строк. Любая помощь приветствуется! Заранее спасибо! Берегите себя!