curve_fit в scipy.optimize workd. В этом коде оценка является линейной функцией, но она может быть лучше.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
X1=[3,3,3.1,3.1,4.2,5.2,6.3,2.3,7.4,8.4,5.4,3.4,3.4,3.4]
X2=[12.1,12.7,18.5,18.3,18.4,18.6,24.2,24.4,24.3,24.5,30.9,30.7,30.3,30.4]
X3=[0.3,9.2,0.3,9.4,0.1,9.8,0.4,9.3,0.7,9.7,18.3,27.4,0.6,9.44]
Y=[-5.890,-5.894,2.888,-3.8706,2.1516,-2.7334,1.4723,-2.1049,0.9167,-1.7281,-2.091,-6.7394,0.8777,-1.7046]
def fitFunc(x, a, b, c, d):
return a + b*x[0] + c*x[1] + d*x[2]
fitParams, fitCovariances = curve_fit(fitFunc, [X1, X2, X3], Y)
print(' fit coefficients:\n', fitParams)
# fit coefficients:
# [-6.11934208 0.21643939 0.26186705 -0.33794415]
Тогда используйте fitParams[0] + fitParams[1] * x1 + fitParams[2] * x2 + fitParams[3] * x3
, оценивается y.
# get single y
def estimate(x1, x2, x3):
return fitParams[0] + fitParams[1] * x1 + fitParams[2] * x2 + fitParams[3] * x3
Сравните результат с исходным y.
Y_estimated = [estimate(X1[i], X2[i], X3[i]) for i in range(len(X1))]
fig, ax = plt.subplots()
ax.scatter(Y, Y_estimated)
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
ax.set_xlabel('Y')
ax.set_ylabel('Y_estimated')
ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.set_aspect('equal')
Ссылка scipy , stackoverflow-multifit , stackoverflow-plot xy