Привет, я только учусь python и в настоящее время пробую opencv и обнаружение объектов. Я использую проект с открытым исходным кодом: YOLOv3-Object-Detection-Tutorial Мне удается следовать инструкциям и управлять обучением моделей шахт и обнаруживать объекты. Сейчас я пытаюсь использовать PyQTt5 и сделать вывод в GUI, чтобы добавить некоторые кнопки взаимодействия, такие как разрешение, загрузить различные веса, возможность изменить счет. К сожалению, я не уверен, как отобразить текущее окно вывода в GUI. Мой вывод всегда всплывает в другом окне. Я буду очень признателен, если кто-нибудь покажет мне, как просто изменить этот код, чтобы он мог выводиться в форме PyQt5 GUI. Заранее спасибо.
import colorsys
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import cv2
import time
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import image_preporcess
class YOLO(object):
_defaults = {
#"model_path": 'logs/trained_weights_final.h5',
"model_path": 'model_data/yolo_weights.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score" : 0.3,
"iou" : 0.45,
"model_image_size" : (416, 416),
"text_size" : 1,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = image_preporcess(np.copy(image), tuple(reversed(self.model_image_size)))
image_data = boxed_image
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.shape[0], image.shape[1]],#[image.size[1], image.size[0]],
K.learning_phase(): 0
})
#print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
thickness = (image.shape[0] + image.shape[1]) // 600
fontScale=1
ObjectsList = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
#label = '{}'.format(predicted_class)
scores = '{:.2f}'.format(score)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.shape[0], np.floor(bottom + 0.5).astype('int32'))
right = min(image.shape[1], np.floor(right + 0.5).astype('int32'))
mid_h = (bottom-top)/2+top
mid_v = (right-left)/2+left
# put object rectangle
cv2.rectangle(image, (left, top), (right, bottom), self.colors[c], thickness)
# get text size
(test_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, thickness/self.text_size, 1)
# put text rectangle
cv2.rectangle(image, (left, top), (left + test_width, top - text_height - baseline), self.colors[c], thickness=cv2.FILLED)
# put text above rectangle
cv2.putText(image, label, (left, top-2), cv2.FONT_HERSHEY_SIMPLEX, thickness/self.text_size, (0, 0, 0), 1)
# add everything to list
ObjectsList.append([top, left, bottom, right, mid_v, mid_h, label, scores])
return image, ObjectsList
def close_session(self):
self.sess.close()
def detect_img(self, image):
#image = cv2.imread(image, cv2.IMREAD_COLOR)
original_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_image_color = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
r_image, ObjectsList = self.detect_image(original_image_color)
return r_image, ObjectsList
if __name__=="__main__":
yolo = YOLO()
# set start time to current time
start_time = time.time()
# displays the frame rate every 2 second
display_time = 2
# Set primarry FPS to 0
fps = 0
# we create the video capture object cap
cap = cv2.VideoCapture(0)
if not cap.isOpened():
raise IOError("We cannot open webcam")
while True:
ret, frame = cap.read()
# resize our captured frame if we need
frame = cv2.resize(frame, None, fx=1.0, fy=1.0, interpolation=cv2.INTER_AREA)
# detect object on our frame
r_image, ObjectsList = yolo.detect_img(frame)
# show us frame with detection
cv2.imshow("Web cam input", r_image)
if cv2.waitKey(25) & 0xFF == ord("q"):
cv2.destroyAllWindows()
break
# calculate FPS
fps += 1
TIME = time.time() - start_time
if TIME > display_time:
print("FPS:", fps / TIME)
fps = 0
start_time = time.time()
cap.release()
cv2.destroyAllWindows()
yolo.close_session()`