Kaggle TPU NotFoundError для пути GCS - PullRequest
0 голосов
/ 22 апреля 2020

Я пытаюсь обучить Neural Net на своем собственном наборе данных в ядре kaggle следующим образом:

%%time
history = model.fit(train_dataset, 
                   steps_per_epoch=train_labels.shape[0] // BATCH_SIZE,
                   callbacks=[lr_callback],
                   epochs=EPOCHS,
                   validation_data=valid_dataset)

До того, как я включил TPU и установил путь следующим образом:

GCS_DS_PATH = KaggleDatasets().get_gcs_path('my-first-data') # you can list the bucket with "!gsutil ls $GCS_DS_PATH"
!gsutil ls $GCS_DS_PATH
clear_output()

Я использую:

tenorflow версия 2.1.0 tenorflow.keras версия 2.2.4-tf

Однако я получаю эту ошибку. Раньше я выполнял точно такой же код с набором данных из соревнований Kaggle, и он работал отлично. Теперь, когда я пытаюсь запустить его на своем собственном наборе данных, я получил эту проблему. Мои данные имеют ту же структуру, что и данные соревнований, и файл Train_17.jpg из сообщения об ошибке не пропущен (я проверил).

Мне интересно, если это как-то связано с ТПУ, так как данные читаются из облачного хранилища, и мой личный (но общедоступный c!) набор данных kaggle может не допустить этого?

У вас есть предложения?

Train for 28 steps, validate for 5 steps

Epoch 00001: LearningRateScheduler reducing learning rate to 1e-05.
Epoch 1/40
 1/28 [>.............................] - ETA: 59:20
---------------------------------------------------------------------------
NotFoundError                             Traceback (most recent call last)
<timed exec> in <module>

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    817         max_queue_size=max_queue_size,
    818         workers=workers,
--> 819         use_multiprocessing=use_multiprocessing)
    820 
    821   def evaluate(self,

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    340                 mode=ModeKeys.TRAIN,
    341                 training_context=training_context,
--> 342                 total_epochs=epochs)
    343             cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
    344 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
    126         step=step, mode=mode, size=current_batch_size) as batch_logs:
    127       try:
--> 128         batch_outs = execution_function(iterator)
    129       except (StopIteration, errors.OutOfRangeError):
    130         # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in execution_function(input_fn)
     96     # `numpy` translates Tensors to values in Eager mode.
     97     return nest.map_structure(_non_none_constant_value,
---> 98                               distributed_function(input_fn))
     99 
    100   return execution_function

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/util/nest.py in map_structure(func, *structure, **kwargs)
    566 
    567   return pack_sequence_as(
--> 568       structure[0], [func(*x) for x in entries],
    569       expand_composites=expand_composites)
    570 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/util/nest.py in <listcomp>(.0)
    566 
    567   return pack_sequence_as(
--> 568       structure[0], [func(*x) for x in entries],
    569       expand_composites=expand_composites)
    570 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in _non_none_constant_value(v)
    128 
    129 def _non_none_constant_value(v):
--> 130   constant_value = tensor_util.constant_value(v)
    131   return constant_value if constant_value is not None else v
    132 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/tensor_util.py in constant_value(tensor, partial)
    820   """
    821   if isinstance(tensor, ops.EagerTensor):
--> 822     return tensor.numpy()
    823   if not is_tensor(tensor):
    824     return tensor

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py in numpy(self)
    940     """
    941     # TODO(slebedev): Consider avoiding a copy for non-CPU or remote tensors.
--> 942     maybe_arr = self._numpy()  # pylint: disable=protected-access
    943     return maybe_arr.copy() if isinstance(maybe_arr, np.ndarray) else maybe_arr
    944 

/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py in _numpy(self)
    908       return self._numpy_internal()
    909     except core._NotOkStatusException as e:
--> 910       six.raise_from(core._status_to_exception(e.code, e.message), None)
    911 
    912   @property

/opt/conda/lib/python3.6/site-packages/six.py in raise_from(value, from_value)

NotFoundError: {{function_node __inference_distributed_function_519795}} Error executing an HTTP request: HTTP response code 404 with body '{
  "error": {
    "code": 404,
    "message": "No such object: kds-f683341923266d33718e6f3ab31b298eb2f954595ee701388c328ce7/images/Train_17.jpg",
    "errors": [
      {
        "message": "No such object: kds-f683341923266d33718e6f3ab31b298eb2f954595ee701388c328ce7/images/Train_17.jpg",
        "domain": "global",
        "reason": "notFound"
      }
    ]
  }
}
'
     when reading metadata of gs://kds-f683341923266d33718e6f3ab31b298eb2f954595ee701388c328ce7/images/Train_17.jpg
     [[{{node ReadFile}}]]
     [[MultiDeviceIteratorGetNextFromShard]]
     [[RemoteCall]]
     [[IteratorGetNextAsOptional]]

1 Ответ

0 голосов
/ 24 апреля 2020

Я использовал неверный путь для доступа к своим данным. Мои изображения в папке «my-first-data / plant-pathology-2020-cropped-images / images»

GCS_DS_PATH = KaggleDatasets().get_gcs_path('my-first-data')
!gsutil ls $GCS_DS_PATH

показывают, что в этом контейнере содержится папка «plant-pathology-2020-cropped-images» , Так вы определяете пути для изображений, чтобы передавать их в модель.

def format_path(st):
    return GCS_DS_PATH + '/plant-pathology-2020-cropped-images/images/' + st + '.jpg'
train_paths = df_train.image_id.apply(format_path).values
...