Мне нужно построить абстрактное синтаксическое дерево из математического выражения, которое позже мне понадобится связать доменные спецификации c объектов вместе в дерево вычислений. Я нашел библиотеку синтаксического анализатора https://github.com/hmenke/boost_matheval отличной отправной точкой.
В моем случае использования мне нужна поддержка троичных условных выражений condition ? true_exp : false_exp
. На данный момент анализатор может анализировать выражения, такие как 1 + (2 + abs(x))
или min(x,1+y)
. Однако мне нужно иметь такой синтаксис: (x > y ? 1 : 0) * (y - z)
.
Я попытался определить правило
auto const conditional_def =
expression > '?' > expression > ':'> expression
;
и расширить правило запуска условным
auto const primary_def =
x3::double_
| ('(' > expression > ')')
| (unary_op > primary)
| binary
| unary
| conditional
| constant
| variable
;
Однако это не выполняется правильно. Правило запуска использует condition
и рекурсивно пытается проанализировать то, что осталось: ? true_exp : false_exp
. Это не соответствует ни к чему. Если бы я определил условие как это
auto const conditional_def =
(x3::lit("if") > '(' > expression > ',' > expression > ','> expression > ')')
;
, синтаксический анализ работал бы для выражения, такого как if(x > y, x , y)
- однако это не стандартное троичное условное выражение ?:
Вот как Атрибуты ast и объявленные определения символов выглядят как
namespace x3 = boost::spirit::x3;
namespace ast {
struct nil {};
struct unary_op;
struct binary_op;
struct conditional_op;
struct expression;
struct operand : x3::variant<
nil
, double
, std::string
, x3::forward_ast<unary_op>
, x3::forward_ast<binary_op>
, x3::forward_ast<conditional_op>
, x3::forward_ast<expression>
> {
using base_type::base_type;
using base_type::operator=;
};
struct unary_op {
double (*op)(double);
operand rhs;
};
struct binary_op {
double (*op)(double, double);
operand lhs;
operand rhs;
};
struct conditional_op {
operand lhs;
operand rhs_true;
operand rhs_false;
};
struct operation {
double (*op)(double, double);
operand rhs;
};
struct expression {
operand lhs;
std::list<operation> rhs;
};
} // namespace ast
struct constant_ : x3::symbols<double> {
constant_() {
add
("e" , boost::math::constants::e<double>())
("pi" , boost::math::constants::pi<double>())
;
}
} constant;
struct ufunc_ : x3::symbols<double (*)(double)> {
ufunc_() {
add
("abs" , static_cast<double (*)(double)>(&std::abs))
;
}
} ufunc;
struct bfunc_ : x3::symbols<double (*)(double, double)> {
bfunc_() {
add
("max" , static_cast<double (*)(double, double)>(&std::fmax))
;
}
} bfunc;
struct unary_op_ : x3::symbols<double (*)(double)> {
unary_op_() {
add
("+", static_cast<double (*)(double)>(&math::plus))
("-", static_cast<double (*)(double)>(&math::minus))
("!", static_cast<double (*)(double)>(&math::unary_not))
;
}
} unary_op;
struct additive_op_ : x3::symbols<double (*)(double, double)> {
additive_op_() {
add
("+", static_cast<double (*)(double, double)>(&math::plus))
("-", static_cast<double (*)(double, double)>(&math::minus))
;
}
} additive_op;
struct multiplicative_op_ : x3::symbols<double (*)(double, double)> {
multiplicative_op_() {
add
("*", static_cast<double (*)(double, double)>(&math::multiplies))
("/", static_cast<double (*)(double, double)>(&math::divides))
("%", static_cast<double (*)(double, double)>(&std::fmod))
;
}
} multiplicative_op;
struct logical_op_ : x3::symbols<double (*)(double, double)> {
logical_op_() {
add
("&&", static_cast<double (*)(double, double)>(&math::logical_and))
("||", static_cast<double (*)(double, double)>(&math::logical_or))
;
}
} logical_op;
struct relational_op_ : x3::symbols<double (*)(double, double)> {
relational_op_() {
add
("<" , static_cast<double (*)(double, double)>(&math::less))
("<=", static_cast<double (*)(double, double)>(&math::less_equals))
(">" , static_cast<double (*)(double, double)>(&math::greater))
(">=", static_cast<double (*)(double, double)>(&math::greater_equals))
;
}
} relational_op;
struct equality_op_ : x3::symbols<double (*)(double, double)> {
equality_op_() {
add
("==", static_cast<double (*)(double, double)>(&math::equals))
("!=", static_cast<double (*)(double, double)>(&math::not_equals))
;
}
} equality_op;
struct power_ : x3::symbols<double (*)(double, double)> {
power_() {
add
("**", static_cast<double (*)(double, double)>(&std::pow))
;
}
} power;
Более полная грамматика и определение атрибутов ast приведены ниже. Я был бы очень признателен, если бы кто-то более опытный с духом Boots помог мне правильно определить троичное условное выражение.
struct expression_class;
struct logical_class;
struct equality_class;
struct relational_class;
struct additive_class;
struct multiplicative_class;
struct factor_class;
struct primary_class;
struct unary_class;
struct binary_class;
struct conditional_class;
struct variable_class;
// Rule declarations
auto const expression = x3::rule<expression_class , ast::expression >{"expression"};
auto const logical = x3::rule<logical_class , ast::expression >{"logical"};
auto const equality = x3::rule<equality_class , ast::expression >{"equality"};
auto const relational = x3::rule<relational_class , ast::expression >{"relational"};
auto const additive = x3::rule<additive_class , ast::expression >{"additive"};
auto const multiplicative = x3::rule<multiplicative_class, ast::expression >{"multiplicative"};
auto const factor = x3::rule<factor_class , ast::expression >{"factor"};
auto const primary = x3::rule<primary_class , ast::operand >{"primary"};
auto const unary = x3::rule<unary_class , ast::unary_op >{"unary"};
auto const binary = x3::rule<binary_class , ast::binary_op >{"binary"};
auto const conditional = x3::rule<conditional_class , ast::conditional_op>{"conditional"};
auto const variable = x3::rule<variable_class , std::string >{"variable"};
// Rule defintions
auto const expression_def =
logical
;
auto const logical_def =
equality >> *(logical_op > equality)
;
auto const equality_def =
relational >> *(equality_op > relational)
;
auto const relational_def =
additive >> *(relational_op > additive)
;
auto const additive_def =
multiplicative >> *(additive_op > multiplicative)
;
auto const multiplicative_def =
factor >> *(multiplicative_op > factor)
;
auto const factor_def =
primary >> *( power > factor )
;
auto const unary_def =
ufunc > '(' > expression > ')'
;
auto const binary_def =
bfunc > '(' > expression > ',' > expression > ')'
;
auto const conditional_def =
expression > '?' > expression > ':'> expression
;
auto const primary_def =
x3::double_
| ('(' > expression > ')')
| (unary_op > primary)
| binary
| unary
| conditional
| constant
| variable
;
BOOST_SPIRIT_DEFINE(
expression,
logical,
equality,
relational,
additive,
multiplicative,
factor,
primary,
unary,
binary,
conditional,
variable
)
Вот как обходится AST с помощью посетителя boost stati c для оценки выражения с таблицей переменных символов
namespace ast {
// Evaluator
struct Evaluator {
using result_type = double;
explicit Evaluator(std::map<std::string, double> sym);
double operator()(nil) const;
double operator()(double n) const;
double operator()(std::string const &c) const;
double operator()(operation const &x, double lhs) const;
double operator()(unary_op const &x) const;
double operator()(binary_op const &x) const;
double operator()(conditional_op const &x) const;
double operator()(expression const &x) const;
private:
std::map<std::string, double> st;
};
Evaluator::Evaluator(std::map<std::string, double> sym)
: st(std::move(sym)) {}
double Evaluator::operator()(nil) const {
BOOST_ASSERT(0);
return 0;
}
double Evaluator::operator()(double n) const { return n; }
double Evaluator::operator()(std::string const &c) const {
auto it = st.find(c);
if (it == st.end()) {
throw std::invalid_argument("Unknown variable " + c);
}
return it->second;
}
double Evaluator::operator()(operation const &x, double lhs) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(unary_op const &x) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(rhs);
}
double Evaluator::operator()(binary_op const &x) const {
double lhs = boost::apply_visitor(*this, x.lhs);
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(conditional_op const &x) const {
return static_cast<bool>(boost::apply_visitor(*this, x.lhs))
? boost::apply_visitor(*this, x.rhs_true)
: boost::apply_visitor(*this, x.rhs_false);
}
double Evaluator::operator()(expression const &x) const {
double state = boost::apply_visitor(*this, x.lhs);
for (operation const &oper : x.rhs) {
state = (*this)(oper, state);
}
return state;
}
} // namespace ast