Вычисление попарно евклидова расстояния между всеми строками кадра данных - PullRequest
1 голос
/ 07 марта 2020

Как я могу вычислить евклидово расстояние между всеми строками кадра данных? Я пытаюсь этот код, но он не работает:

zero_data = data
distance = lambda column1, column2: pd.np.linalg.norm(column1 - column2)
result = zero_data.apply(lambda col1: zero_data.apply(lambda col2: distance(col1, col2)))
result.head()

Вот так выглядит мой (44062 на 278) фрейм данных:

Please see sample data here

Ответы [ 2 ]

1 голос
/ 07 марта 2020

Чтобы вычислить евклидово расстояние между двумя строками i и j кадра данных df:

np.linalg.norm(df.loc[i] - df.loc[j])

Чтобы вычислить его между последовательными строками, то есть 0 и 1, 1 и 2, 2 и 3, .. .

np.linalg.norm(df.diff(axis=0).drop(0), axis=1)

Если вы хотите вычислить его между всеми строками, то есть 0 и 1, 0 и 2, ..., 1 и 1, 1 и 2 ..., то вам нужно l oop через все комбинации i и j (имейте в виду, что для 44062 строк существует 970707891 таких комбинаций, поэтому использование for-l oop будет очень медленным):

import itertools

for i, j in itertools.combinations(df.index, 2):
    d_ij = np.linalg.norm(df.loc[i] - df.loc[j])

Edit:

Вместо этого вы можете использовать scipy.spatial.distance.cdist , который вычисляет расстояние между каждой парой из двух наборов входных данных:

from scipy.spatial.distance import cdist

cdist(df, df, 'euclid')

Это вернет вам симметричную c (44062 на 44062) матрицу евклидовых расстояний между всеми строками вашего информационного кадра. Проблема в том, что вам нужно много памяти для работы (не менее 8 * 44062 ** 2 байта памяти, т.е. ~ 16 ГБ). Поэтому лучше использовать pdist

from scipy.spatial.distance import pdist

pdist(df.values, 'euclid')

, который будет возвращать массив (размером 970707891) всех парных евклидовых расстояний между строками df.

Ps Не забывайте игнорировать столбец «Actual_data» в вычислениях расстояний. Например, вы можете сделать следующее: data = df.drop('Actual_Data', axis=1).values, а затем cdist(data, data, 'euclid') или pdist(data, 'euclid'). Вы также можете создать другой фрейм данных с такими расстояниями:

data = df.drop('Actual_Data', axis=1).values

d = pd.DataFrame(itertools.combinations(df.index, 2), columns=['i','j'])
d['dist'] = pdist(data, 'euclid')


   i  j  dist
0  0  1  ...
1  0  2  ...
2  0  3  ...
3  0  4  ...
...
0 голосов
/ 07 марта 2020

Работа с подмножеством ваших данных, например,

df_data = [[888888, 3, 0, 0],
 [677767, 0, 2, 1],
 [212341212, 0, 0, 0],
 [141414141414, 0, 0, 0],
 [1112224, 0, 0, 0]]

# Creating the data
df = pd.DataFrame(data=data, columns=['Actual_Data', '8,8', '6,6', '7,7'], dtype=np.float64)

# Which looks like
#     Actual_Data  8,8  6,6  7,7
# 0  8.888880e+05  3.0  0.0  0.0
# 1  6.777670e+05  0.0  2.0  1.0
# 2  2.123412e+08  0.0  0.0  0.0
# 3  1.414141e+11  0.0  0.0  0.0
# 4  1.112224e+06  0.0  0.0  0.0

# Computing the distance matrix
dist_matrix = df.apply(lambda row: [np.linalg.norm(row.values - df.loc[[_id], :].values, 2) for _id in df.index.values], axis=1)

# Which looks like
# 0     [0.0, 211121.00003315636, 211452324.0, 141413252526.0, 223336.000020149]
# 1    [211121.00003315636, 0.0, 211663445.0, 141413463647.0, 434457.0000057543]
# 2                 [211452324.0, 211663445.0, 0.0, 141201800202.0, 211228988.0]
# 3        [141413252526.0, 141413463647.0, 141201800202.0, 0.0, 141413029190.0]
# 4      [223336.000020149, 434457.0000057543, 211228988.0, 141413029190.0, 0.0]

# Reformatting the above into readable format
dist_matrix = pd.DataFrame(
  data=dist_matrix.values.tolist(), 
  columns=df.index.tolist(), 
  index=df.index.tolist())

# Which gives you
#               0             1             2             3             4
# 0  0.000000e+00  2.111210e+05  2.114523e+08  1.414133e+11  2.233360e+05
# 1  2.111210e+05  0.000000e+00  2.116634e+08  1.414135e+11  4.344570e+05
# 2  2.114523e+08  2.116634e+08  0.000000e+00  1.412018e+11  2.112290e+08
# 3  1.414133e+11  1.414135e+11  1.412018e+11  0.000000e+00  1.414130e+11
# 4  2.233360e+05  4.344570e+05  2.112290e+08  1.414130e+11  0.000000e+00

Обновление

, как указано в комментариях, проблема - memory overflow, поэтому мы должны решать проблему партиями .

# Collecting the data
# df = ....

# Set this number to a lower value if you get the same `memory` errors.
batch = 200 # #'s of row's / user's used to compute the matrix

# To be conservative, let's write the intermediate results to file type.
dffname = []

for ifile,_slice in enumerate(np.array_split(range(df.shape[0]), batch)):

  # Let's compute distance for `batch` #'s of points in data frame
  tmp_df = df.iloc[_slice, :].apply(lambda row: [np.linalg.norm(row.values - df.loc[[_id], :].values, 2) for _id in df.index.values], axis=1)

  tmp_df = pd.DataFrame(tmp_df.values.tolist(), index=df.index.values[_slice], columns=df.index.values)

  # You can change it from csv to any other files
  tmp_df.to_csv(f"{ifile+1}.csv")
  dffname.append(f"{ifile+1}.csv")

# Reading back the dataFrames
dflist = []
for f in dffname:
  dflist.append(pd.read_csv(f, dtype=np.float64, index_col=0))

res = pd.concat(dflist)
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...