cv.folds <- createMultiFolds(train$Label,k = 10, times = 3)
cv.cntrl <- trainControl(method = "cv", number = 10,
repeats = 3,index = cv.folds,search="grid")
Model_RF_RF<-randomForest(Label ~ .,data = train.tokens.tfidf.df,ntree=500,mtry=82,importance=TRUE,
proximity=TRUE,trControl = cv.cntrl,nodesize=10)
Это код для обучения модели, который затем применяется к тестовым данным
t1<-tuneRF(train.tokens.tfidf.df[,-1],train.tokens.tfidf.df[,1],stepFactor = 0.5,plot = TRUE,
ntreeTry = 500, trace = TRUE,improve =0.05)
# Total time of execution on workstation was
total.time <- Sys.time() - start.time
total.time
PD5<-predict(Model_RF_RF,train.tokens.tfidf.df)
confusionMatrix(PD5,train$Label )
comparison5<-cbind.data.frame(train$Label,PD5)
comparison5