Я пытаюсь реализовать регрессионную модель логистики c, но продолжаю получать значения 'nan' в качестве стоимости. Я пробовал это с несколькими наборами данных, но это дает тот же результат. Различные источники дают немного различную реализацию градиентного спуска, поэтому я не уверен, что реализация градиента здесь верна. Вот полный код:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
class LogisticRegression:
def __init__(self, lr=0.001, n_iter=8000):
self.lr = lr
self.n_iter = n_iter
self.weights = None
"""
z is dot product of features and weights, which is then mapped to discrete values, such as between 0 and 1
"""
def sigmoid(self, z):
return 1.0/(1+np.exp(-z))
def predict(self, x_features, weights):
"""Returns 1d array of probabilities that the class label == 1"""
z = np.dot(x_features, weights)
return self.sigmoid(z)
def cost(self, x_features, labels, weights):
"""
Using Mean Absolute Error
Cost = (labels*log(predictions) + (1-labels)*log(1-predictions) ) / len(labels)
"""
observation = len(labels)
predictions = self.predict(x_features, weights)
#take the error when label = 1
class1_cost = -labels*np.log(predictions)
#take the error when label = 0
class2_cost = (1-labels)*np.log(1-predictions)
#take sum of both the cost
cost = class1_cost+class2_cost
#take the average cost
cost = cost.sum()/observation
return cost
def update_weight(self, x_features, labels, weights):
"""
Vectorized Gradient Descent
"""
N = len(x_features)
#get predictions (approximation of y)
predictions = self.predict(x_features, weights)
gradient = np.dot(x_features.T, predictions-labels)
#take the average cost of derivative for each feature
gradient /= N
#multiply gradients by our learning rate
gradient *= self.lr
#subtract from our weights to minimize cost
weights -= gradient
return weights
def give_predictions(self, x_features, weights):
linear_model_prediction = self.predict(x_features, weights)
y_predicted_cls = [1 if i>0.5 else 0 for i in linear_model_prediction]
return y_predicted_cls
def train(self, features, labels):
n_samples, n_features = features.shape
self.weights = np.zeros((n_features,1)) #initialize the weight matrix
cost_history = []
for i in range(self.n_iter):
self.weights = self.update_weight(features, labels, self.weights)
#calculate error for auditing purposes
cost = self.cost(features, labels, self.weights)
cost_history.append(cost)
#Log process
if i%1000 == 0:
print("iter: {}, cost: {}".format(str(i),str(cost)))
return self.weights, cost_history
def generate_data():
bc = datasets.load_breast_cancer()
x_features, labels = bc.data, bc.target
x_train, x_test, y_train, y_test = train_test_split(x_features, labels, test_size=0.2, random_state=1234)
return x_train, x_test, y_train, y_test
x_train, x_test, y_train, y_test = generate_data()
model = LogisticRegression()
model.train(x_train, y_train)