У меня есть этот код, который изменяет мое изображение, но выдает ошибку, когда я его получаю: Value Error: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (1, 3072)
. Я использовал модули tensorflow
, keras
и cv2
.
Похоже, мой ввод или вывод неверен или мне нужно ввести 4 измерения.
import tensorflow as tf
import keras
#from keras.models import load_model
from keras.models import load_model
import argparse
import pickle
import cv2
import os
from sklearn.preprocessing import LabelBinarizer
lb = LabelBinarizer()
f = open("simple_multiclass_classifcation_lb.pickle", "wb")
f.write(pickle.dumps(lb))
f.close()
test_image_path = r"E:\classification\test\test\pan26.jpg"
model_path = r"PanModel.model.h5"
label_binarizer_path = "E:\API\simple_multiclass_classifcation_lb.pickle"
image = cv2.imread(test_image_path)
output = image.copy()
image = cv2.resize(image, (32,32))
#scale the pixel values to [0, 1]
image = image.astype("float") / 255.0
image = image.flatten()
print ("image after flattening",len(image))
image = image.reshape((1, image.shape[0]))
print ("image--reshape",image.shape)
# load the model and label binarizer
print("[INFO] loading network and label binarizer...")
model = tf.keras.models.load_model('PanModel.model.h5')
#model = load_model("PanModel.model.h5")
lb = pickle.loads(open(label_binarizer_path, "rb").read())
# make a prediction on the image
print (image.shape)
preds = model.predict(image)
# find the class label index with the largest corresponding
# probability
print ("preds.argmax(axis=1)",preds.argmax(axis=1))
i = preds.argmax(axis=1)[0]
print (i)
label = lb.classes_[i]
# draw the class label + probability on the output image
text = "{}: {:.2f}%".format(label, preds[0][i] * 100)
cv2.putText(output, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# show the output image
cv2.imshow("Image", output)
cv2.waitKey(0)
Вывод:
ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (1, 3072)
Можете ли вы помочь определить ошибку?