Я тестирую пример кода ниже. Все результаты классификации довольно и вполне разумны (80% и более). Все результаты регрессии ужасны и весьма ненормальны (около 20%). С чего бы это? Я, должно быть, что-то делаю не так, но я не вижу, что здесь происходит.
import pandas as pd
import numpy as np
#reading the dataset
df=pd.read_csv("C:\\my_path\\train.csv")
#filling missing values
df['Gender'].fillna('Male', inplace=True)
df.fillna(0)
df.Loan_Status.replace(('Y', 'N'), (1, 0), inplace=True)
#split dataset into train and test
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.3, random_state=0)
x_train=train.drop(['Loan_Status','Loan_ID'],axis=1)
y_train=train['Loan_Status']
x_test=test.drop(['Loan_Status','Loan_ID'],axis=1)
y_test=test['Loan_Status']
#create dummies
x_train=pd.get_dummies(x_train)
x_test=pd.get_dummies(x_test)
# Baggin Classifier
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1))
model.fit(x_train, y_train)
model.score(x_test,y_test)
# Bagging Regressor
from sklearn.ensemble import BaggingRegressor
model = BaggingRegressor(tree.DecisionTreeRegressor(random_state=1))
model.fit(x_train, y_train)
model.score(x_test,y_test)
# AdaBoostClassifier
from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(random_state=1)
model.fit(x_train, y_train)
model.score(x_test,y_test)
# AdaBoostRegressor
from sklearn.ensemble import AdaBoostRegressor
model = AdaBoostRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
# GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingClassifier
model= GradientBoostingClassifier(learning_rate=0.01,random_state=1)
model.fit(x_train, y_train)
model.score(x_test,y_test)
# GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingRegressor
model= GradientBoostingRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
# XGBClassifier
import xgboost as xgb
model=xgb.XGBClassifier(random_state=1,learning_rate=0.01)
model.fit(x_train, y_train)
model.score(x_test,y_test)
# XGBRegressor
import xgboost as xgb
model=xgb.XGBRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
Образцы данных приведены по ссылке ниже.
https://www.kaggle.com/wendykan/lending-club-loan-data
Наконец, вот небольшой пример того, что я вижу.
# Bagging Regressor
from sklearn.ensemble import BaggingRegressor
regressor = BaggingRegressor()
regressor.fit(x_train,y_train)
accuracy = regressor.score(x_test,y_test)
print(accuracy*100,'%')
# result:
13.022388059701505 %
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train,y_train)
accuracy = regressor.score(x_test,y_test)
print(accuracy*100,'%')
# result:
29.836209522493196 %