Я до сих пор не знаю, какие значения для DDX и DDY требуются, но если найден приемлемый обходной путь, который вычисляет уровень детализации для моих градиентов. К сожалению, качество этого решения не такое хорошее, как у реальной функции сэмплирования с анизотропной c фильтрацией.
На случай, если кому-то понадобится: Расчет описан в: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
Моя реализация HLSL:
// calculate reflected ray
float3 reflRay = reflect(-viewDir, normal);
// reflection map lookup
float3 dxr = ddx(reflRay);
float3 dyr = ddy(reflRay);
// cubemap size for lod computation
float reflWidth, reflHeight;
reflectionMap.GetDimensions(reflWidth, reflHeight);
// calculate lod based on raydiffs
float lod = calcLod(getCubeDiff(reflRay, dxr).xy * reflWidth, getCubeDiff(reflRay, dyr).xy * reflHeight);
return reflectionMap.SampleLevel(linearSampler, reflRay, lod).rgb;
Вспомогательные функции:
float pow2(float x) {
return x * x;
}
// calculates texture coordinates [-1, 1] for the view direction (xy values must be divided by axisMajorValue for proper [-1, 1] range).else
// z coordinate is the faceId
float3 getCubeCoord(float3 viewDir, out float axisMajorValue)
{
// according to dx spec: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#PointSampling
// Choose the largest magnitude component of the input vector. Call this magnitude of this value AxisMajor. In the case of a tie, the following precedence should occur: Z, Y, X.
int axisMajor = 0;
int axisFlip = 0;
axisMajorValue = 0.0;
[unroll] for (int i = 0; i < 3; ++i)
{
if (abs(viewDir[i]) >= axisMajorValue)
{
axisMajor = i;
axisFlip = viewDir[i] < 0.0f ? 1 : 0;
axisMajorValue = abs(viewDir[i]);
}
}
int faceId = axisMajor * 2 + axisFlip;
// Select and mirror the minor axes as defined by the TextureCube coordinate space. Call this new 2d coordinate Position.
int axisMinor1 = axisMajor == 0 ? 2 : 0; // first coord is x or z
int axisMinor2 = 3 - axisMajor - axisMinor1;
// Project the coordinate onto the cube by dividing the components Position by AxisMajor.
//float u = viewDir[axisMinor1] / axisMajorValue;
//float v = -viewDir[axisMinor2] / axisMajorValue;
// don't project for getCubeDiff function!
float u = viewDir[axisMinor1];
float v = -viewDir[axisMinor2];
switch (faceId)
{
case 0:
case 5:
u *= -1.0f;
break;
case 2:
v *= -1.0f;
break;
}
return float3(u, v, float(faceId));
}
float3 getCubeDiff(float3 ray, float3 diff)
{
// from: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
// Using TC, determine which component is of the largest magnitude, as when calculating the texel location. If any of the components are equivalent, precedence is as follows: Z, Y, X. The absolute value of this will be referred to as AxisMajor.
// select and mirror the minor axes of TC as defined by the TextureCube coordinate space to generate TC'.uv
float axisMajor;
float3 tuv = getCubeCoord(ray, axisMajor);
// select and mirror the minor axes of the partial derivative vectors as defined by the TextureCube coordinate space, generating 2 new partial derivative vectors dX'.uv & dY'.uv.
float derivateMajor;
float3 duv = getCubeCoord(diff, derivateMajor);
// Calculate 2 new dX and dY vectors for future calculations as follows:
// dX.uv = (AxisMajor*dX'.uv - TC'.uv*DerivativeMajorX)/(AxisMajor*AxisMajor)
float3 res;
res.z = 0.0;
res.xy = (axisMajor * duv.xy - tuv.xy * derivateMajor) / (axisMajor * axisMajor);
return res * 0.5;
}
// dx, dy in pixel coordinates
float calcLod(float2 dX, float2 dY)
{
// from: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
float A = pow2(dX.y) + pow2(dY.y);
float B = -2.0 * (dX.x * dX.y + dY.x * dY.y);
float C = pow2(dX.x) + pow2(dY.x);
float F = pow2(dX.x * dY.y - dY.x * dX.y);
float p = A - C;
float q = A + C;
float t = sqrt(pow2(p) + pow2(B));
float lengthX = sqrt(abs(F * (t+p) / ( t * (q+t))) + abs(F * (t-p) / ( t * (q+t))));
float lengthY = sqrt(abs(F * (t-p) / ( t * (q-t))) + abs(F * (t+p) / ( t * (q-t))));
return log2(max(lengthX,lengthY));
}