Я разработал конвейер для оценки модели с использованием пакета brms R, и теперь мне нужно преобразовать его в python. Я понимаю, что ближе всего к brms в python я могу найти pystan, где я должен написать свою модель с использованием синтаксиса Stan. Я хотел бы знать, есть ли функция brms, которая генерирует код Stan, который можно использовать в качестве аргумента model_code для функции pystan.StanModel в python. Я попытался использовать код, сгенерированный функцией make_stancode, но он не сработал.
Это код, сгенерированный make_stancode:
life_span_code = """
// generated with brms 2.10.0
functions {
/* compute monotonic effects
* Args:
* scale: a simplex parameter
* i: index to sum over the simplex
* Returns:
* a scalar between 0 and 1
*/
real mo(vector scale, int i) {
if (i == 0) {
return 0;
} else {
return rows(scale) * sum(scale[1:i]);
}
}
}
data {
int<lower=1> N; // number of observations
vector[N] Y; // response variable
int<lower=1> Ksp; // number of special effects terms
int<lower=1> Imo; // number of monotonic variables
int<lower=2> Jmo[Imo]; // length of simplexes
// monotonic variables
int Xmo_1[N];
// prior concentration of monotonic simplexes
vector[Jmo[1]] con_simo_1;
int prior_only; // should the likelihood be ignored?
}
transformed data {
}
parameters {
// temporary intercept for centered predictors
real Intercept;
// special effects coefficients
vector[Ksp] bsp;
// simplexes of monotonic effects
simplex[Jmo[1]] simo_1;
real<lower=0> sigma; // residual SD
}
transformed parameters {
}
model {
// initialize linear predictor term
vector[N] mu = Intercept + rep_vector(0, N);
for (n in 1:N) {
// add more terms to the linear predictor
mu[n] += (bsp[1]) * mo(simo_1, Xmo_1[n]);
}
// priors including all constants
target += student_t_lpdf(Intercept | 3, 65, 12);
target += dirichlet_lpdf(simo_1 | con_simo_1);
target += student_t_lpdf(sigma | 3, 0, 12)
- 1 * student_t_lccdf(0 | 3, 0, 12);
// likelihood including all constants
if (!prior_only) {
target += normal_lpdf(Y | mu, sigma);
}
}
generated quantities {
// actual population-level intercept
real b_Intercept = Intercept;
}
"""
Это код, который я использую в python:
## Libraries
import pandas as pd
import pystan
import numpy as np
import random as rd
## Build data for life span example with ordenated factors
income_options = ["below_20", "20_to_40", "40_to_100", "greater_100"]
income_mean = [30, 60, 70, 75]
income_factor = [0, 1, 2, 3]
dict_data = {'income_options' : income_options,
'income_mean' : income_mean,
'income_factor' : income_factor}
map_df = pd.DataFrame(dict_data)
income_rep = rd.sample(income_factor*25, 100)
rand_inc = np.random.normal(loc = 0, scale = 1, size = 100).tolist()
data_df = pd.DataFrame({'income_factor': income_rep,
'rand_inc' : rand_inc})
data_df = pd.merge(data_df, map_df, on = 'income_factor')
data_df['ls'] = data_df['income_mean'] + data_df['rand_inc']
N = data_df.shape[0]
Y = data_df['ls'].tolist()
K = 1
X = [1]*N
Ksp = 1
Imo = 1
Xmo_1 = data_df['income_factor'].tolist()
Jmo = len(data_df['income_factor'].unique().tolist())-1
con_simo_1 = [1]*Jmo
prior_only = 0
life_span_data = {'N' : N,
'Y' : Y,
'K' : K,
'X' : X,
'Ksp' : Ksp,
'Imo' : Imo,
'Xmo_1' : Xmo_1,
'Jmo' : Jmo,
'con_simo_1' : con_simo_1,
'prior_only' : prior_only}
life_span_sm = pystan.StanModel(model_code = life_span_code)
life_span_fit = life_span_sm.sampling(data= life_span_data, iter=1000, chains=2)
И эта ошибка, которую я получаю:
"RuntimeError: Исключение: несоответствие в измерениях чисел, объявленных и найденных в контексте; этап обработки = инициализация данных; имя переменной = Jmo; объявлено dims = (1); найдено dims = () (в «неизвестное имя файла» в строке 24) "
Спасибо за помощь