Давайте оценим использование этой строки в приведенном ниже блоке кода. L1_delta = L1_error * nonlin(L1,True) # line 36
import numpy as np #line 1
# sigmoid function
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
# input dataset
X = np.array([ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1] ])
# output dataset
y = np.array([[0,0,1,1]]).T
# seed random numbers to make calculation
# deterministic (just a good practice)
np.random.seed(1)
# initialize weights randomly with mean 0
syn0 = 2*np.random.random((3,1)) - 1
for iter in range(1000):
# forward propagation
L0 = X
L1 = nonlin(np.dot(L0,syn0))
# how much did we miss?
L1_error = y - L1
# multiply how much we missed by the
# slope of the sigmoid at the values in L1
L1_delta = L1_error * nonlin(L1,True) # line 36
# update weights
syn0 += np.dot(L0.T,L1_delta)
print ("Output After Training:")
print (L1)
Я хотел знать, требуется ли линия? Зачем нам фактор производной сигмоида?
Я видел много подобных примеров регрессии logisti c, в которых производная сигмоида не используется. Например https://github.com/chayankathuria/LogReg01/blob/master/GradientDescent.py