для этого вы можете использовать Countvectorizer Scikit learn
from sklearn.feature_extraction.text import CountVectorizer
from gensim import matutils
from gensim.models.ldamodel import LdaModel
text = ['computer time graph', 'survey response eps', 'human system computer','machinelearning is very hot topic','python win the race for simplicity as compared to other programming language']
# suppose this are the word that you want to be used in your vocab
vocabulary = ['machine','python','learning','human', 'system','hot','time']
vect = CountVectorizer(vocabulary = vocabulary)
x = vect.fit_transform(text)
feature_name = vect.get_feature_names()
# now you can use matutils helper function of gensim
model = LdaModel(matutils.Sparse2Corpus(x),num_topic=3,id2word=dict([(i, s) for i, s in enumerate(feature_name)]))
#printing the topic
model.show_topics()
![enter image description here](https://i.stack.imgur.com/3y0io.png)
#to see the vocab that use being used
print(vect.get_feature_names())
['machine', 'python', 'learning', 'human', 'system', 'hot', 'time'] # you will get the feature that you want include