Шаблоны C ++ Turing-завершены? - PullRequest
99 голосов
/ 10 октября 2008

Мне сказали, что система шаблонов в C ++ является Turing-полной во время компиляции. Это упоминается в этом посте , а также в википедии .

Можете ли вы привести нетривиальный пример вычисления, использующего это свойство?

Полезен ли этот факт на практике?

Ответы [ 15 ]

166 голосов
/ 09 ноября 2008

Я сделал машину Тьюринга в C ++ 11. Возможности, которые добавляет C ++ 11, не имеют большого значения для машины Тьюринга. Он просто предусматривает списки правил произвольной длины с использованием шаблонов с переменными значениями вместо использования извращенного макропрограммирования макросов :). Имена условий используются для вывода диаграммы на стандартный вывод. Я удалил этот код, чтобы сделать образец коротким.

#include <iostream>

template<bool C, typename A, typename B>
struct Conditional {
    typedef A type;
};

template<typename A, typename B>
struct Conditional<false, A, B> {
    typedef B type;
};

template<typename...>
struct ParameterPack;

template<bool C, typename = void>
struct EnableIf { };

template<typename Type>
struct EnableIf<true, Type> {
    typedef Type type;
};

template<typename T>
struct Identity {
    typedef T type;
};

// define a type list 
template<typename...>
struct TypeList;

template<typename T, typename... TT>
struct TypeList<T, TT...>  {
    typedef T type;
    typedef TypeList<TT...> tail;
};

template<>
struct TypeList<> {

};

template<typename List>
struct GetSize;

template<typename... Items>
struct GetSize<TypeList<Items...>> {
    enum { value = sizeof...(Items) };
};

template<typename... T>
struct ConcatList;

template<typename... First, typename... Second, typename... Tail>
struct ConcatList<TypeList<First...>, TypeList<Second...>, Tail...> {
    typedef typename ConcatList<TypeList<First..., Second...>, 
                                Tail...>::type type;
};

template<typename T>
struct ConcatList<T> {
    typedef T type;
};

template<typename NewItem, typename List>
struct AppendItem;

template<typename NewItem, typename...Items>
struct AppendItem<NewItem, TypeList<Items...>> {
    typedef TypeList<Items..., NewItem> type;
};

template<typename NewItem, typename List>
struct PrependItem;

template<typename NewItem, typename...Items>
struct PrependItem<NewItem, TypeList<Items...>> {
    typedef TypeList<NewItem, Items...> type;
};

template<typename List, int N, typename = void>
struct GetItem {
    static_assert(N > 0, "index cannot be negative");
    static_assert(GetSize<List>::value > 0, "index too high");
    typedef typename GetItem<typename List::tail, N-1>::type type;
};

template<typename List>
struct GetItem<List, 0> {
    static_assert(GetSize<List>::value > 0, "index too high");
    typedef typename List::type type;
};

template<typename List, template<typename, typename...> class Matcher, typename... Keys>
struct FindItem {
    static_assert(GetSize<List>::value > 0, "Could not match any item.");
    typedef typename List::type current_type;
    typedef typename Conditional<Matcher<current_type, Keys...>::value, 
                                 Identity<current_type>, // found!
                                 FindItem<typename List::tail, Matcher, Keys...>>
        ::type::type type;
};

template<typename List, int I, typename NewItem>
struct ReplaceItem {
    static_assert(I > 0, "index cannot be negative");
    static_assert(GetSize<List>::value > 0, "index too high");
    typedef typename PrependItem<typename List::type, 
                             typename ReplaceItem<typename List::tail, I-1,
                                                  NewItem>::type>
        ::type type;
};

template<typename NewItem, typename Type, typename... T>
struct ReplaceItem<TypeList<Type, T...>, 0, NewItem> {
    typedef TypeList<NewItem, T...> type;
};

enum Direction {
    Left = -1,
    Right = 1
};

template<typename OldState, typename Input, typename NewState, 
         typename Output, Direction Move>
struct Rule {
    typedef OldState old_state;
    typedef Input input;
    typedef NewState new_state;
    typedef Output output;
    static Direction const direction = Move;
};

template<typename A, typename B>
struct IsSame {
    enum { value = false }; 
};

template<typename A>
struct IsSame<A, A> {
    enum { value = true };
};

template<typename Input, typename State, int Position>
struct Configuration {
    typedef Input input;
    typedef State state;
    enum { position = Position };
};

template<int A, int B>
struct Max {
    enum { value = A > B ? A : B };
};

template<int n>
struct State {
    enum { value = n };
    static char const * name;
};

template<int n>
char const* State<n>::name = "unnamed";

struct QAccept {
    enum { value = -1 };
    static char const* name;
};

struct QReject {
    enum { value = -2 };
    static char const* name; 
};

#define DEF_STATE(ID, NAME) \
    typedef State<ID> NAME ; \
    NAME :: name = #NAME ;

template<int n>
struct Input {
    enum { value = n };
    static char const * name;

    template<int... I>
    struct Generate {
        typedef TypeList<Input<I>...> type;
    };
};

template<int n>
char const* Input<n>::name = "unnamed";

typedef Input<-1> InputBlank;

#define DEF_INPUT(ID, NAME) \
    typedef Input<ID> NAME ; \
    NAME :: name = #NAME ;

template<typename Config, typename Transitions, typename = void> 
struct Controller {
    typedef Config config;
    enum { position = config::position };

    typedef typename Conditional<
        static_cast<int>(GetSize<typename config::input>::value) 
            <= static_cast<int>(position),
        AppendItem<InputBlank, typename config::input>,
        Identity<typename config::input>>::type::type input;
    typedef typename config::state state;

    typedef typename GetItem<input, position>::type cell;

    template<typename Item, typename State, typename Cell>
    struct Matcher {
        typedef typename Item::old_state checking_state;
        typedef typename Item::input checking_input;
        enum { value = IsSame<State, checking_state>::value && 
                       IsSame<Cell,  checking_input>::value
        };
    };
    typedef typename FindItem<Transitions, Matcher, state, cell>::type rule;

    typedef typename ReplaceItem<input, position, typename rule::output>::type new_input;
    typedef typename rule::new_state new_state;
    typedef Configuration<new_input, 
                          new_state, 
                          Max<position + rule::direction, 0>::value> new_config;

    typedef Controller<new_config, Transitions> next_step;
    typedef typename next_step::end_config end_config;
    typedef typename next_step::end_input end_input;
    typedef typename next_step::end_state end_state;
    enum { end_position = next_step::position };
};

template<typename Input, typename State, int Position, typename Transitions>
struct Controller<Configuration<Input, State, Position>, Transitions, 
                  typename EnableIf<IsSame<State, QAccept>::value || 
                                    IsSame<State, QReject>::value>::type> {
    typedef Configuration<Input, State, Position> config;
    enum { position = config::position };
    typedef typename Conditional<
        static_cast<int>(GetSize<typename config::input>::value) 
            <= static_cast<int>(position),
        AppendItem<InputBlank, typename config::input>,
        Identity<typename config::input>>::type::type input;
    typedef typename config::state state;

    typedef config end_config;
    typedef input end_input;
    typedef state end_state;
    enum { end_position = position };
};

template<typename Input, typename Transitions, typename StartState>
struct TuringMachine {
    typedef Input input;
    typedef Transitions transitions;
    typedef StartState start_state;

    typedef Controller<Configuration<Input, StartState, 0>, Transitions> controller;
    typedef typename controller::end_config end_config;
    typedef typename controller::end_input end_input;
    typedef typename controller::end_state end_state;
    enum { end_position = controller::end_position };
};

#include <ostream>

template<>
char const* Input<-1>::name = "_";

char const* QAccept::name = "qaccept";
char const* QReject::name = "qreject";

int main() {
    DEF_INPUT(1, x);
    DEF_INPUT(2, x_mark);
    DEF_INPUT(3, split);

    DEF_STATE(0, start);
    DEF_STATE(1, find_blank);
    DEF_STATE(2, go_back);

    /* syntax:  State, Input, NewState, Output, Move */
    typedef TypeList< 
        Rule<start, x, find_blank, x_mark, Right>,
        Rule<find_blank, x, find_blank, x, Right>,
        Rule<find_blank, split, find_blank, split, Right>,
        Rule<find_blank, InputBlank, go_back, x, Left>,
        Rule<go_back, x, go_back, x, Left>,
        Rule<go_back, split, go_back, split, Left>,
        Rule<go_back, x_mark, start, x, Right>,
        Rule<start, split, QAccept, split, Left>> rules;

    /* syntax: initial input, rules, start state */
    typedef TuringMachine<TypeList<x, x, x, x, split>, rules, start> double_it;
    static_assert(IsSame<double_it::end_input, 
                         TypeList<x, x, x, x, split, x, x, x, x>>::value, 
                "Hmm... This is borky!");
}
98 голосов
/ 10 октября 2008

Пример

#include <iostream>

template <int N> struct Factorial
{
    enum { val = Factorial<N-1>::val * N };
};

template<>
struct Factorial<0>
{
    enum { val = 1 };
};

int main()
{
    // Note this value is generated at compile time.
    // Also note that most compilers have a limit on the depth of the recursion available.
    std::cout << Factorial<4>::val << "\n";
}

Это было немного забавно, но не очень практично.

Чтобы ответить на вторую часть вопроса:
Полезен ли этот факт на практике?

Краткий ответ: вроде.

Длинный ответ: Да, но только если вы - демон шаблона.

Добиться хорошего программирования с использованием шаблонного метапрограммирования, которое действительно полезно для других (например, библиотеки), действительно сложно (хотя и выполнимо). В помощь Boost даже есть MPL aka (Библиотека мета-программирования). Но попробуйте отладить ошибку компилятора в коде вашего шаблона, и вам предстоит долгая тяжелая поездка.

Но хороший практический пример его использования для чего-то полезного:

Скотт Мейерс (Scott Meyers) работает над расширениями языка C ++ (я использую этот термин свободно), используя средства шаблонов. Вы можете прочитать о его работе здесь ' Enforcing Code Features '

27 голосов
/ 10 октября 2008

" Шаблоны C ++ завершены по Тьюрингу " - это реализация машины Тьюринга в шаблонах ... которая нетривиальна и прямо доказывает это. Конечно, это тоже не очень полезно!

13 голосов
/ 10 октября 2008

Мой C ++ немного ржавый, поэтому, возможно, он не идеален, но он близок.

template <int N> struct Factorial
{
    enum { val = Factorial<N-1>::val * N };
};

template <> struct Factorial<0>
{
    enum { val = 1 };
}

const int num = Factorial<10>::val;    // num set to 10! at compile time.

Смысл в том, чтобы продемонстрировать, что компилятор полностью оценивает рекурсивное определение, пока не достигнет ответа.

10 голосов
/ 08 февраля 2010

Чтобы дать нетривиальный пример: http://gitorious.org/metatrace, трассировщик лучей времени компиляции C ++.

Обратите внимание, что C ++ 0x добавит нематериальное средство времени компиляции во время компиляции в виде constexpr:

constexpr unsigned int fac (unsigned int u) {
        return (u<=1) ? (1) : (u*fac(u-1));
}

Вы можете использовать constexpr -выражение везде, где вам нужны постоянные времени компиляции, но вы также можете вызывать constexpr -функции с неконстантными параметрами.

Одна крутая вещь заключается в том, что это, наконец, разрешит математику с плавающей точкой времени компиляции, хотя стандарт прямо заявляет, что арифметика с плавающей точкой времени компиляции не должна соответствовать арифметике с плавающей точкой времени выполнения:

bool f(){
    char array[1+int(1+0.2-0.1-0.1)]; //Must be evaluated during translation
    int  size=1+int(1+0.2-0.1-0.1); //May be evaluated at runtime
    return sizeof(array)==size;
}

Не указано, будет ли значение f () истинным или ложным.

8 голосов
/ 29 апреля 2009

Факторный пример фактически не показывает, что шаблоны Тьюринга завершены, а показывает, что они поддерживают примитивную рекурсию. Самый простой способ показать, что шаблоны являются полными по Тьюрингу, это тезис Черча-Тьюринга, то есть реализовать машину Тьюринга (грязную и немного бессмысленную) или три правила (app, abs var) нетипизированного лямбда-исчисления. Последнее намного проще и гораздо интереснее.

То, что обсуждается, является чрезвычайно полезной функцией, когда вы понимаете, что шаблоны C ++ допускают чисто функциональное программирование во время компиляции, формализм, который является выразительным, мощным и элегантным, но также очень сложным для написания, если у вас мало опыта. Также обратите внимание, как много людей считают, что получение сильно шаблонизированного кода часто может потребовать больших усилий: это в точности относится к (чистым) функциональным языкам, которые усложняют компиляцию, но неожиданно дают код, который не требует отладки.

8 голосов
/ 10 октября 2008

The Book Современный дизайн C ++ - шаблон общего программирования и проектирования от Andrei Alexandrescu - лучшее место, где можно получить опыт работы с полезными и мощными шаблонами общего программирования.

5 голосов
/ 10 октября 2008

Я думаю, это называется шаблон метапрограммирования .

3 голосов
/ 20 марта 2016

Хорошо, вот реализация Turing Machine во время компиляции, выполняющая двухсимвольный занятый символ с 4 состояниями

#include <iostream>

#pragma mark - Tape

constexpr int Blank = -1;

template<int... xs>
class Tape {
public:
    using type = Tape<xs...>;
    constexpr static int length = sizeof...(xs);
};

#pragma mark - Print

template<class T>
void print(T);

template<>
void print(Tape<>) {
    std::cout << std::endl;
}

template<int x, int... xs>
void print(Tape<x, xs...>) {
    if (x == Blank) {
        std::cout << "_ ";
    } else {
        std::cout << x << " ";
    }
    print(Tape<xs...>());
}

#pragma mark - Concatenate

template<class, class>
class Concatenate;

template<int... xs, int... ys>
class Concatenate<Tape<xs...>, Tape<ys...>> {
public:
    using type = Tape<xs..., ys...>;
};

#pragma mark - Invert

template<class>
class Invert;

template<>
class Invert<Tape<>> {
public:
    using type = Tape<>;
};

template<int x, int... xs>
class Invert<Tape<x, xs...>> {
public:
    using type = typename Concatenate<
        typename Invert<Tape<xs...>>::type,
        Tape<x>
    >::type;
};

#pragma mark - Read

template<int, class>
class Read;

template<int n, int x, int... xs>
class Read<n, Tape<x, xs...>> {
public:
    using type = typename std::conditional<
        (n == 0),
        std::integral_constant<int, x>,
        Read<n - 1, Tape<xs...>>
    >::type::type;
};

#pragma mark - N first and N last

template<int, class>
class NLast;

template<int n, int x, int... xs>
class NLast<n, Tape<x, xs...>> {
public:
    using type = typename std::conditional<
        (n == sizeof...(xs)),
        Tape<xs...>,
        NLast<n, Tape<xs...>>
    >::type::type;
};

template<int, class>
class NFirst;

template<int n, int... xs>
class NFirst<n, Tape<xs...>> {
public:
    using type = typename Invert<
        typename NLast<
            n, typename Invert<Tape<xs...>>::type
        >::type
    >::type;
};

#pragma mark - Write

template<int, int, class>
class Write;

template<int pos, int x, int... xs>
class Write<pos, x, Tape<xs...>> {
public:
    using type = typename Concatenate<
        typename Concatenate<
            typename NFirst<pos, Tape<xs...>>::type,
            Tape<x>
        >::type,
        typename NLast<(sizeof...(xs) - pos - 1), Tape<xs...>>::type
    >::type;
};

#pragma mark - Move

template<int, class>
class Hold;

template<int pos, int... xs>
class Hold<pos, Tape<xs...>> {
public:
    constexpr static int position = pos;
    using tape = Tape<xs...>;
};

template<int, class>
class Left;

template<int pos, int... xs>
class Left<pos, Tape<xs...>> {
public:
    constexpr static int position = typename std::conditional<
        (pos > 0),
        std::integral_constant<int, pos - 1>,
        std::integral_constant<int, 0>
    >::type();

    using tape = typename std::conditional<
        (pos > 0),
        Tape<xs...>,
        Tape<Blank, xs...>
    >::type;
};

template<int, class>
class Right;

template<int pos, int... xs>
class Right<pos, Tape<xs...>> {
public:
    constexpr static int position = pos + 1;

    using tape = typename std::conditional<
        (pos < sizeof...(xs) - 1),
        Tape<xs...>,
        Tape<xs..., Blank>
    >::type;
};

#pragma mark - States

template <int>
class Stop {
public:
    constexpr static int write = -1;
    template<int pos, class tape> using move = Hold<pos, tape>;
    template<int x> using next = Stop<x>;
};

#define ADD_STATE(_state_)      \
template<int>                   \
class _state_ { };

#define ADD_RULE(_state_, _read_, _write_, _move_, _next_)          \
template<>                                                          \
class _state_<_read_> {                                             \
public:                                                             \
    constexpr static int write = _write_;                           \
    template<int pos, class tape> using move = _move_<pos, tape>;   \
    template<int x> using next = _next_<x>;                         \
};

#pragma mark - Machine

template<template<int> class, int, class>
class Machine;

template<template<int> class State, int pos, int... xs>
class Machine<State, pos, Tape<xs...>> {
    constexpr static int symbol = typename Read<pos, Tape<xs...>>::type();
    using state = State<symbol>;

    template<int x>
    using nextState = typename State<symbol>::template next<x>;

    using modifiedTape = typename Write<pos, state::write, Tape<xs...>>::type;
    using move = typename state::template move<pos, modifiedTape>;

    constexpr static int nextPos = move::position;
    using nextTape = typename move::tape;

public:
    using step = Machine<nextState, nextPos, nextTape>;
};

#pragma mark - Run

template<class>
class Run;

template<template<int> class State, int pos, int... xs>
class Run<Machine<State, pos, Tape<xs...>>> {
    using step = typename Machine<State, pos, Tape<xs...>>::step;

public:
    using type = typename std::conditional<
        std::is_same<State<0>, Stop<0>>::value,
        Tape<xs...>,
        Run<step>
    >::type::type;
};

ADD_STATE(A);
ADD_STATE(B);
ADD_STATE(C);
ADD_STATE(D);

ADD_RULE(A, Blank, 1, Right, B);
ADD_RULE(A, 1, 1, Left, B);

ADD_RULE(B, Blank, 1, Left, A);
ADD_RULE(B, 1, Blank, Left, C);

ADD_RULE(C, Blank, 1, Right, Stop);
ADD_RULE(C, 1, 1, Left, D);

ADD_RULE(D, Blank, 1, Right, D);
ADD_RULE(D, 1, Blank, Right, A);

using tape = Tape<Blank>;
using machine = Machine<A, 0, tape>;
using result = Run<machine>::type;

int main() {
    print(result());
    return 0;
}

Идеальный пробный прогон: https://ideone.com/MvBU3Z

Объяснение: http://victorkomarov.blogspot.ru/2016/03/compile-time-turing-machine.html

Github с большим количеством примеров: https://github.com/fnz/CTTM

3 голосов
/ 10 октября 2008

Вы можете проверить эту статью доктора Доббса о реализации FFT с шаблонами, которые, я думаю, не так просты. Суть в том, чтобы позволить компилятору выполнять лучшую оптимизацию, чем для не шаблонных реализаций, поскольку алгоритм FFT использует много констант (например, таблицы sin)

часть I

часть II

...