Я предполагаю, что у вас есть 10 кадров для каждого видео. Это простая модель, которая использует функции VGG16 (GloabAveragePooling) для каждого кадра и LSTM для классификации последовательностей кадров.
Вы можете поэкспериментировать, добавив еще несколько слоев и изменив гиперпараметры.
Примечание: в вашей модели много несоответствий, включая передачу 5-мерных данных непосредственно в VGG16, который ожидает 4-мерные данные.
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
import tensorflow as tf
import numpy as np
from tensorflow.keras.applications import VGG16
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
IMG_SIZE=(150,150,3)
num_class = 3
def create_base():
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
x = GlobalAveragePooling2D()(conv_base.output)
base_model = Model(conv_base.input, x)
return base_model
conv_base = create_base()
ip = Input(shape=(10,150,150,3))
t_conv = TimeDistributed(conv_base)(ip) # vgg16 feature extractor
t_lstm = LSTM(10, return_sequences=False)(t_conv)
f_softmax = Dense(num_class, activation='softmax')(t_lstm)
model = Model(ip, f_softmax)
model.summary()
Model: "model_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_32 (InputLayer) [(None, 10, 150, 150, 3)] 0
_________________________________________________________________
time_distributed_4 (TimeDist (None, 10, 512) 14714688
_________________________________________________________________
lstm_1 (LSTM) (None, 10) 20920
_________________________________________________________________
dense (Dense) (None, 3) 33
=================================================================
Total params: 14,735,641
Trainable params: 14,735,641
Non-trainable params: 0
________________________