Я пытаюсь создать свой собственный детектор объектов с использованием предварительно обученной модели tenorflow api: fast_rcnn_inception_v2_coco , и я работаю с Google-Colab.
Первое, что я сделал, - это сбор данных обучения и тестирование. данные для проверки. Папка обучения содержит 336 xmls, в то время как тестовая папка содержит 72.
примечание: я самостоятельно увеличивал данные на тренировочных данных, переворачивая их, поэтому технически в обучении 168 изображений, которые фактически удваиваются.
После преобразования в записи, я начал тренировать модель, используя model_main.py, следующим образом:
!python object_detection/model_main.py --model_dir=training --pipeline_config_path=training/faster_rcnn_inception_v2_coco.config
Мой файл конфигурации выглядит следующим образом:
# Faster R-CNN with Inception v2, configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
faster_rcnn {
num_classes: 2
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
fine_tune_checkpoint_type: "detection"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the COCO dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "data/train.record"
}
label_map_path: "training/object-detection.pbtxt"
}
eval_config: {
num_examples: 72
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "data/test.record"
}
label_map_path: "training/object-detection.pbtxt"
shuffle: false
num_readers: 1
}
Когда Я остановил тренировку, открыл Tensorboard и получил следующие графики:
Потеря обучения
Потеря проверки
Теперь до сих пор как я знаю, потери при обучении должны начинаться с высоких значений и go медленно уменьшаться и уменьшаться, тогда как при проверке потери должны начинаться с больших значений, go снижаться, а затем go снова повышаться при превышении данных тренировки.
Но я не уверен, почему мои потери при проверке начинаются низко, а только растут, есть идеи, почему? Кроме того, я вижу, что у меня есть небольшое количество точек графика на этом графике, может быть, это повлияет на график?
Я должен сказать, что когда я наполняю свою модель случайными новыми изображениями, чтобы предсказать результаты, это довольно хорошо, что странно для меня.