API обнаружения объектов Tensorflow - потери при проверке начинаются с малого и растут - PullRequest
0 голосов
/ 05 апреля 2020

Я пытаюсь создать свой собственный детектор объектов с использованием предварительно обученной модели tenorflow api: fast_rcnn_inception_v2_coco , и я работаю с Google-Colab.

Первое, что я сделал, - это сбор данных обучения и тестирование. данные для проверки. Папка обучения содержит 336 xmls, в то время как тестовая папка содержит 72.

примечание: я самостоятельно увеличивал данные на тренировочных данных, переворачивая их, поэтому технически в обучении 168 изображений, которые фактически удваиваются.

После преобразования в записи, я начал тренировать модель, используя model_main.py, следующим образом:

!python object_detection/model_main.py --model_dir=training --pipeline_config_path=training/faster_rcnn_inception_v2_coco.config

Мой файл конфигурации выглядит следующим образом:

# Faster R-CNN with Inception v2, configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.


model {
  faster_rcnn {
    num_classes: 2
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 600
        max_dimension: 1024
      }
    }
    feature_extractor {
      type: 'faster_rcnn_inception_v2'
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        scales: [0.25, 0.5, 1.0, 2.0]
        aspect_ratios: [0.5, 1.0, 2.0]
        height_stride: 16
        width_stride: 16
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.01
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.7
    first_stage_max_proposals: 300
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        use_dropout: false
        dropout_keep_probability: 1.0
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.0
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
  }
}

train_config: {
  batch_size: 1
  optimizer {
    momentum_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: 0.0002
          schedule {
            step: 900000
            learning_rate: .00002
          }
          schedule {
            step: 1200000
            learning_rate: .000002
          }
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
  fine_tune_checkpoint_type: "detection"
  from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the COCO dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "data/train.record"
  }
  label_map_path: "training/object-detection.pbtxt"
}

eval_config: {
  num_examples: 72
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
   max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "data/test.record"
  }
  label_map_path: "training/object-detection.pbtxt"
  shuffle: false
  num_readers: 1
}

Когда Я остановил тренировку, открыл Tensorboard и получил следующие графики:

Потеря обучения

Потеря проверки

Теперь до сих пор как я знаю, потери при обучении должны начинаться с высоких значений и go медленно уменьшаться и уменьшаться, тогда как при проверке потери должны начинаться с больших значений, go снижаться, а затем go снова повышаться при превышении данных тренировки.

Но я не уверен, почему мои потери при проверке начинаются низко, а только растут, есть идеи, почему? Кроме того, я вижу, что у меня есть небольшое количество точек графика на этом графике, может быть, это повлияет на график?

Я должен сказать, что когда я наполняю свою модель случайными новыми изображениями, чтобы предсказать результаты, это довольно хорошо, что странно для меня.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...