Доброе утро,
Я пытаюсь реализовать улучшенную WGAN для одномерных данных, как описано в этом документе: https://arxiv.org/pdf/1704.00028.pdf
Это было реализовано как пример в keras-contrib github: https://github.com/keras-team/keras-contrib/blob/master/examples/improved_wgan.py Тем не менее, эта реализация градиентных штрафных потерь больше не работает с tf2. K.gradients () возвращает [нет].
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:505 train_function *
outputs = self.distribute_strategy.run(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:467 train_step **
y, y_pred, sample_weight, regularization_losses=self.losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:204 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:143 __call__
losses = self.call(y_true, y_pred)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:246 call
return self.fn(y_true, y_pred, **self._fn_kwargs)
<ipython-input-7-4f0896d0107b>:104 gradient_penalty_loss
gradients_sqr = K.square(gradients)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py:2189 square
return math_ops.square(x)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_math_ops.py:9964 square
"Square", x=x, name=name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:488 _apply_op_helper
(input_name, err))
ValueError: Tried to convert 'x' to a tensor and failed. Error: None values not supported.
Вот полный пример проблемы: https://colab.research.google.com/drive/11dcMKoiCigTnEn7QvmjqLNrJdmFztByT
Кто-нибудь знает, что изменилось ? Любая идея, как решить эту проблему?
ОБНОВЛЕНИЕ: Это игнорирует ошибку при построении графа вычислений. Затем кажется, что он запускается
def gradient_penalty_loss(y_true, y_pred, averaged_samples):
gradients = K.gradients(y_pred, averaged_samples)[0]
try:
gradients_sqr = K.square(gradients)
except ValueError:
print("Gradients returned None")
return 0
gradients_sqr_sum = K.sum(gradients_sqr, axis=np.arange(1, len(gradients_sqr.shape)))
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
gradient_penalty = K.square(1 - gradient_l2_norm)
return K.mean(gradient_penalty)
Тем не менее, я получаю невероятно высокие функции потерь, градиент_penalty_loss игнорируется? ![Loss](https://i.stack.imgur.com/On9Cq.png)