Здравствуйте, я ищу способ распечатать обнаруженные классы и оценки при обнаружении объектов с помощью object_detection_tutorial . Большинство решений здесь предназначены для Tensorflow 1 и больше не работают.
Я нашел одно Решение здесь, в StackOverflow, но, к сожалению, он распечатывает только один из обнаруженных объектов. Я не могу понять, как мне изменить код, чтобы получить оценки для всех обнаруженных объектов на изображении.
Это код, приведенный в решении, которое я нашел здесь
def get_classes_name_and_scores(
boxes,
classes,
scores,
category_index,
max_boxes_to_draw=20,
min_score_thresh=.9): # returns bigger than 90% precision
display_str = {}
if not max_boxes_to_draw:
max_boxes_to_draw = boxes.shape[0]
for i in range(min(max_boxes_to_draw, boxes.shape[0])):
if scores is None or scores[i] > min_score_thresh:
if classes[i] in six.viewkeys(category_index):
display_str['name'] = category_index[classes[i]]['name']
display_str['score'] = '{}%'.format(int(100 * scores[i]))
return display_str
Я распечатываю это с помощью этого кода
def show_inference(model, image_path):
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = np.array(Image.open(image_path))
# Actual detection.
output_dict = run_inference_for_single_image(model, image_np)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks_reframed', None),
use_normalized_coordinates=True,
line_thickness=8)
# Print the Name and Score of each detected Object
print(get_classes_name_and_scores(
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index))
display(Image.fromarray(image_np))